123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import Normal, Constant
- from ppdet.modeling.layers import MultiClassNMS
- from ppdet.core.workspace import register
- from ppdet.modeling.bbox_utils import delta2bbox_v2
- __all__ = ['YOLOFHead']
- INF = 1e8
- def reduce_mean(tensor):
- world_size = paddle.distributed.get_world_size()
- if world_size == 1:
- return tensor
- paddle.distributed.all_reduce(tensor)
- return tensor / world_size
- def find_inside_anchor(feat_size, stride, num_anchors, im_shape):
- feat_h, feat_w = feat_size[:2]
- im_h, im_w = im_shape[:2]
- inside_h = min(int(np.ceil(im_h / stride)), feat_h)
- inside_w = min(int(np.ceil(im_w / stride)), feat_w)
- inside_mask = paddle.zeros([feat_h, feat_w], dtype=paddle.bool)
- inside_mask[:inside_h, :inside_w] = True
- inside_mask = inside_mask.unsqueeze(-1).expand(
- [feat_h, feat_w, num_anchors])
- return inside_mask.reshape([-1])
- @register
- class YOLOFFeat(nn.Layer):
- def __init__(self,
- feat_in=256,
- feat_out=256,
- num_cls_convs=2,
- num_reg_convs=4,
- norm_type='bn'):
- super(YOLOFFeat, self).__init__()
- assert norm_type == 'bn', "YOLOFFeat only support BN now."
- self.feat_in = feat_in
- self.feat_out = feat_out
- self.num_cls_convs = num_cls_convs
- self.num_reg_convs = num_reg_convs
- self.norm_type = norm_type
- cls_subnet, reg_subnet = [], []
- for i in range(self.num_cls_convs):
- feat_in = self.feat_in if i == 0 else self.feat_out
- cls_subnet.append(
- nn.Conv2D(
- feat_in,
- self.feat_out,
- 3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0.0))))
- cls_subnet.append(
- nn.BatchNorm2D(
- self.feat_out,
- weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
- cls_subnet.append(nn.ReLU())
- for i in range(self.num_reg_convs):
- feat_in = self.feat_in if i == 0 else self.feat_out
- reg_subnet.append(
- nn.Conv2D(
- feat_in,
- self.feat_out,
- 3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0.0))))
- reg_subnet.append(
- nn.BatchNorm2D(
- self.feat_out,
- weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
- reg_subnet.append(nn.ReLU())
- self.cls_subnet = nn.Sequential(*cls_subnet)
- self.reg_subnet = nn.Sequential(*reg_subnet)
- def forward(self, fpn_feat):
- cls_feat = self.cls_subnet(fpn_feat)
- reg_feat = self.reg_subnet(fpn_feat)
- return cls_feat, reg_feat
- @register
- class YOLOFHead(nn.Layer):
- __shared__ = ['num_classes', 'trt', 'exclude_nms']
- __inject__ = [
- 'conv_feat', 'anchor_generator', 'bbox_assigner', 'loss_class',
- 'loss_bbox', 'nms'
- ]
- def __init__(self,
- num_classes=80,
- conv_feat='YOLOFFeat',
- anchor_generator='AnchorGenerator',
- bbox_assigner='UniformAssigner',
- loss_class='FocalLoss',
- loss_bbox='GIoULoss',
- ctr_clip=32.0,
- delta_mean=[0.0, 0.0, 0.0, 0.0],
- delta_std=[1.0, 1.0, 1.0, 1.0],
- nms='MultiClassNMS',
- prior_prob=0.01,
- nms_pre=1000,
- use_inside_anchor=False,
- trt=False,
- exclude_nms=False):
- super(YOLOFHead, self).__init__()
- self.num_classes = num_classes
- self.conv_feat = conv_feat
- self.anchor_generator = anchor_generator
- self.na = self.anchor_generator.num_anchors
- self.bbox_assigner = bbox_assigner
- self.loss_class = loss_class
- self.loss_bbox = loss_bbox
- self.ctr_clip = ctr_clip
- self.delta_mean = delta_mean
- self.delta_std = delta_std
- self.nms = nms
- self.nms_pre = nms_pre
- self.use_inside_anchor = use_inside_anchor
- if isinstance(self.nms, MultiClassNMS) and trt:
- self.nms.trt = trt
- self.exclude_nms = exclude_nms
- bias_init_value = -math.log((1 - prior_prob) / prior_prob)
- self.cls_score = self.add_sublayer(
- 'cls_score',
- nn.Conv2D(
- in_channels=conv_feat.feat_out,
- out_channels=self.num_classes * self.na,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(
- value=bias_init_value))))
- self.bbox_pred = self.add_sublayer(
- 'bbox_pred',
- nn.Conv2D(
- in_channels=conv_feat.feat_out,
- out_channels=4 * self.na,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0))))
- self.object_pred = self.add_sublayer(
- 'object_pred',
- nn.Conv2D(
- in_channels=conv_feat.feat_out,
- out_channels=self.na,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0))))
- def forward(self, feats, targets=None):
- assert len(feats) == 1, "YOLOF only has one level feature."
- conv_cls_feat, conv_reg_feat = self.conv_feat(feats[0])
- cls_logits = self.cls_score(conv_cls_feat)
- objectness = self.object_pred(conv_reg_feat)
- bboxes_reg = self.bbox_pred(conv_reg_feat)
- N, C, H, W = paddle.shape(cls_logits)[:]
- cls_logits = cls_logits.reshape((N, self.na, self.num_classes, H, W))
- objectness = objectness.reshape((N, self.na, 1, H, W))
- norm_cls_logits = cls_logits + objectness - paddle.log(
- 1.0 + paddle.clip(
- cls_logits.exp(), max=INF) + paddle.clip(
- objectness.exp(), max=INF))
- norm_cls_logits = norm_cls_logits.reshape((N, C, H, W))
- anchors = self.anchor_generator([norm_cls_logits])
- if self.training:
- yolof_losses = self.get_loss(
- [anchors[0], norm_cls_logits, bboxes_reg], targets)
- return yolof_losses
- else:
- return anchors[0], norm_cls_logits, bboxes_reg
- def get_loss(self, head_outs, targets):
- anchors, cls_logits, bbox_preds = head_outs
- feat_size = cls_logits.shape[-2:]
- cls_logits = cls_logits.transpose([0, 2, 3, 1])
- cls_logits = cls_logits.reshape([0, -1, self.num_classes])
- bbox_preds = bbox_preds.transpose([0, 2, 3, 1])
- bbox_preds = bbox_preds.reshape([0, -1, 4])
- num_pos_list = []
- cls_pred_list, cls_tar_list = [], []
- reg_pred_list, reg_tar_list = [], []
- # find and gather preds and targets in each image
- for cls_logit, bbox_pred, gt_bbox, gt_class, im_shape in zip(
- cls_logits, bbox_preds, targets['gt_bbox'], targets['gt_class'],
- targets['im_shape']):
- if self.use_inside_anchor:
- inside_mask = find_inside_anchor(
- feat_size, self.anchor_generator.strides[0], self.na,
- im_shape.tolist())
- cls_logit = cls_logit[inside_mask]
- bbox_pred = bbox_pred[inside_mask]
- anchors = anchors[inside_mask]
- bbox_pred = delta2bbox_v2(
- bbox_pred,
- anchors,
- self.delta_mean,
- self.delta_std,
- ctr_clip=self.ctr_clip)
- bbox_pred = bbox_pred.reshape([-1, bbox_pred.shape[-1]])
- # -2:ignore, -1:neg, >=0:pos
- match_labels, pos_bbox_pred, pos_bbox_tar = self.bbox_assigner(
- bbox_pred, anchors, gt_bbox)
- pos_mask = (match_labels >= 0)
- neg_mask = (match_labels == -1)
- chosen_mask = paddle.logical_or(pos_mask, neg_mask)
- gt_class = gt_class.reshape([-1])
- bg_class = paddle.to_tensor(
- [self.num_classes], dtype=gt_class.dtype)
- # a trick to assign num_classes to negative targets
- gt_class = paddle.concat([gt_class, bg_class], axis=-1)
- match_labels = paddle.where(
- neg_mask,
- paddle.full_like(match_labels, gt_class.size - 1), match_labels)
- num_pos_list.append(max(1.0, pos_mask.sum().item()))
- cls_pred_list.append(cls_logit[chosen_mask])
- cls_tar_list.append(gt_class[match_labels[chosen_mask]])
- reg_pred_list.append(pos_bbox_pred)
- reg_tar_list.append(pos_bbox_tar)
- num_tot_pos = paddle.to_tensor(sum(num_pos_list))
- num_tot_pos = reduce_mean(num_tot_pos).item()
- num_tot_pos = max(1.0, num_tot_pos)
- cls_pred = paddle.concat(cls_pred_list)
- cls_tar = paddle.concat(cls_tar_list)
- cls_loss = self.loss_class(
- cls_pred, cls_tar, reduction='sum') / num_tot_pos
- reg_pred_list = [_ for _ in reg_pred_list if _ is not None]
- reg_tar_list = [_ for _ in reg_tar_list if _ is not None]
- if len(reg_pred_list) == 0:
- reg_loss = bbox_preds.sum() * 0.0
- else:
- reg_pred = paddle.concat(reg_pred_list)
- reg_tar = paddle.concat(reg_tar_list)
- reg_loss = self.loss_bbox(reg_pred, reg_tar).sum() / num_tot_pos
- yolof_losses = {
- 'loss': cls_loss + reg_loss,
- 'loss_cls': cls_loss,
- 'loss_reg': reg_loss,
- }
- return yolof_losses
- def get_bboxes_single(self,
- anchors,
- cls_scores,
- bbox_preds,
- im_shape,
- scale_factor,
- rescale=True):
- assert len(cls_scores) == len(bbox_preds)
- mlvl_bboxes = []
- mlvl_scores = []
- for anchor, cls_score, bbox_pred in zip(anchors, cls_scores,
- bbox_preds):
- cls_score = cls_score.reshape([-1, self.num_classes])
- bbox_pred = bbox_pred.reshape([-1, 4])
- if self.nms_pre is not None and cls_score.shape[0] > self.nms_pre:
- max_score = cls_score.max(axis=1)
- _, topk_inds = max_score.topk(self.nms_pre)
- bbox_pred = bbox_pred.gather(topk_inds)
- anchor = anchor.gather(topk_inds)
- cls_score = cls_score.gather(topk_inds)
- bbox_pred = delta2bbox_v2(
- bbox_pred,
- anchor,
- self.delta_mean,
- self.delta_std,
- max_shape=im_shape,
- ctr_clip=self.ctr_clip).squeeze()
- mlvl_bboxes.append(bbox_pred)
- mlvl_scores.append(F.sigmoid(cls_score))
- mlvl_bboxes = paddle.concat(mlvl_bboxes)
- mlvl_bboxes = paddle.squeeze(mlvl_bboxes)
- if rescale:
- mlvl_bboxes = mlvl_bboxes / paddle.concat(
- [scale_factor[::-1], scale_factor[::-1]])
- mlvl_scores = paddle.concat(mlvl_scores)
- mlvl_scores = mlvl_scores.transpose([1, 0])
- return mlvl_bboxes, mlvl_scores
- def decode(self, anchors, cls_scores, bbox_preds, im_shape, scale_factor):
- batch_bboxes = []
- batch_scores = []
- for img_id in range(cls_scores[0].shape[0]):
- num_lvls = len(cls_scores)
- cls_score_list = [cls_scores[i][img_id] for i in range(num_lvls)]
- bbox_pred_list = [bbox_preds[i][img_id] for i in range(num_lvls)]
- bboxes, scores = self.get_bboxes_single(
- anchors, cls_score_list, bbox_pred_list, im_shape[img_id],
- scale_factor[img_id])
- batch_bboxes.append(bboxes)
- batch_scores.append(scores)
- batch_bboxes = paddle.stack(batch_bboxes, 0)
- batch_scores = paddle.stack(batch_scores, 0)
- return batch_bboxes, batch_scores
- def post_process(self, head_outs, im_shape, scale_factor):
- anchors, cls_scores, bbox_preds = head_outs
- cls_scores = cls_scores.transpose([0, 2, 3, 1])
- bbox_preds = bbox_preds.transpose([0, 2, 3, 1])
- pred_bboxes, pred_scores = self.decode(
- [anchors], [cls_scores], [bbox_preds], im_shape, scale_factor)
- if self.exclude_nms:
- # `exclude_nms=True` just use in benchmark
- return pred_bboxes.sum(), pred_scores.sum()
- else:
- bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
- return bbox_pred, bbox_num
|