123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is based on:
- # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/yolox_head.py
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- from functools import partial
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import Normal, Constant
- from ppdet.core.workspace import register
- from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance
- from ppdet.data.transform.atss_assigner import bbox_overlaps
- from .gfl_head import GFLHead
- @register
- class OTAHead(GFLHead):
- """
- OTAHead
- Args:
- conv_feat (object): Instance of 'FCOSFeat'
- num_classes (int): Number of classes
- fpn_stride (list): The stride of each FPN Layer
- prior_prob (float): Used to set the bias init for the class prediction layer
- loss_qfl (object): Instance of QualityFocalLoss.
- loss_dfl (object): Instance of DistributionFocalLoss.
- loss_bbox (object): Instance of bbox loss.
- assigner (object): Instance of label assigner.
- reg_max: Max value of integral set :math: `{0, ..., reg_max}`
- n QFL setting. Default: 16.
- """
- __inject__ = [
- 'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
- 'assigner', 'nms'
- ]
- __shared__ = ['num_classes']
- def __init__(self,
- conv_feat='FCOSFeat',
- dgqp_module=None,
- num_classes=80,
- fpn_stride=[8, 16, 32, 64, 128],
- prior_prob=0.01,
- loss_class='QualityFocalLoss',
- loss_dfl='DistributionFocalLoss',
- loss_bbox='GIoULoss',
- assigner='SimOTAAssigner',
- reg_max=16,
- feat_in_chan=256,
- nms=None,
- nms_pre=1000,
- cell_offset=0):
- super(OTAHead, self).__init__(
- conv_feat=conv_feat,
- dgqp_module=dgqp_module,
- num_classes=num_classes,
- fpn_stride=fpn_stride,
- prior_prob=prior_prob,
- loss_class=loss_class,
- loss_dfl=loss_dfl,
- loss_bbox=loss_bbox,
- reg_max=reg_max,
- feat_in_chan=feat_in_chan,
- nms=nms,
- nms_pre=nms_pre,
- cell_offset=cell_offset)
- self.conv_feat = conv_feat
- self.dgqp_module = dgqp_module
- self.num_classes = num_classes
- self.fpn_stride = fpn_stride
- self.prior_prob = prior_prob
- self.loss_qfl = loss_class
- self.loss_dfl = loss_dfl
- self.loss_bbox = loss_bbox
- self.reg_max = reg_max
- self.feat_in_chan = feat_in_chan
- self.nms = nms
- self.nms_pre = nms_pre
- self.cell_offset = cell_offset
- self.use_sigmoid = self.loss_qfl.use_sigmoid
- self.assigner = assigner
- def _get_target_single(self, flatten_cls_pred, flatten_center_and_stride,
- flatten_bbox, gt_bboxes, gt_labels):
- """Compute targets for priors in a single image.
- """
- pos_num, label, label_weight, bbox_target = self.assigner(
- F.sigmoid(flatten_cls_pred), flatten_center_and_stride,
- flatten_bbox, gt_bboxes, gt_labels)
- return (pos_num, label, label_weight, bbox_target)
- def get_loss(self, head_outs, gt_meta):
- cls_scores, bbox_preds = head_outs
- num_level_anchors = [
- featmap.shape[-2] * featmap.shape[-1] for featmap in cls_scores
- ]
- num_imgs = gt_meta['im_id'].shape[0]
- featmap_sizes = [[featmap.shape[-2], featmap.shape[-1]]
- for featmap in cls_scores]
- decode_bbox_preds = []
- center_and_strides = []
- for featmap_size, stride, bbox_pred in zip(featmap_sizes,
- self.fpn_stride, bbox_preds):
- # center in origin image
- yy, xx = self.get_single_level_center_point(featmap_size, stride,
- self.cell_offset)
- center_and_stride = paddle.stack([xx, yy, stride, stride], -1).tile(
- [num_imgs, 1, 1])
- center_and_strides.append(center_and_stride)
- center_in_feature = center_and_stride.reshape(
- [-1, 4])[:, :-2] / stride
- bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
- [num_imgs, -1, 4 * (self.reg_max + 1)])
- pred_distances = self.distribution_project(bbox_pred)
- decode_bbox_pred_wo_stride = distance2bbox(
- center_in_feature, pred_distances).reshape([num_imgs, -1, 4])
- decode_bbox_preds.append(decode_bbox_pred_wo_stride * stride)
- flatten_cls_preds = [
- cls_pred.transpose([0, 2, 3, 1]).reshape(
- [num_imgs, -1, self.cls_out_channels])
- for cls_pred in cls_scores
- ]
- flatten_cls_preds = paddle.concat(flatten_cls_preds, axis=1)
- flatten_bboxes = paddle.concat(decode_bbox_preds, axis=1)
- flatten_center_and_strides = paddle.concat(center_and_strides, axis=1)
- gt_boxes, gt_labels = gt_meta['gt_bbox'], gt_meta['gt_class']
- pos_num_l, label_l, label_weight_l, bbox_target_l = [], [], [], []
- for flatten_cls_pred,flatten_center_and_stride,flatten_bbox,gt_box, gt_label \
- in zip(flatten_cls_preds.detach(),flatten_center_and_strides.detach(), \
- flatten_bboxes.detach(),gt_boxes, gt_labels):
- pos_num, label, label_weight, bbox_target = self._get_target_single(
- flatten_cls_pred, flatten_center_and_stride, flatten_bbox,
- gt_box, gt_label)
- pos_num_l.append(pos_num)
- label_l.append(label)
- label_weight_l.append(label_weight)
- bbox_target_l.append(bbox_target)
- labels = paddle.to_tensor(np.stack(label_l, axis=0))
- label_weights = paddle.to_tensor(np.stack(label_weight_l, axis=0))
- bbox_targets = paddle.to_tensor(np.stack(bbox_target_l, axis=0))
- center_and_strides_list = self._images_to_levels(
- flatten_center_and_strides, num_level_anchors)
- labels_list = self._images_to_levels(labels, num_level_anchors)
- label_weights_list = self._images_to_levels(label_weights,
- num_level_anchors)
- bbox_targets_list = self._images_to_levels(bbox_targets,
- num_level_anchors)
- num_total_pos = sum(pos_num_l)
- try:
- paddle.distributed.all_reduce(num_total_pos)
- num_total_pos = paddle.clip(
- num_total_pos / paddle.distributed.get_world_size(), min=1.)
- except:
- num_total_pos = max(num_total_pos, 1)
- loss_bbox_list, loss_dfl_list, loss_qfl_list, avg_factor = [], [], [], []
- for cls_score, bbox_pred, center_and_strides, labels, label_weights, bbox_targets, stride in zip(
- cls_scores, bbox_preds, center_and_strides_list, labels_list,
- label_weights_list, bbox_targets_list, self.fpn_stride):
- center_and_strides = center_and_strides.reshape([-1, 4])
- cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
- [-1, self.cls_out_channels])
- bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
- [-1, 4 * (self.reg_max + 1)])
- bbox_targets = bbox_targets.reshape([-1, 4])
- labels = labels.reshape([-1])
- label_weights = label_weights.reshape([-1])
- bg_class_ind = self.num_classes
- pos_inds = paddle.nonzero(
- paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
- as_tuple=False).squeeze(1)
- score = np.zeros(labels.shape)
- if len(pos_inds) > 0:
- pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
- pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
- pos_centers = paddle.gather(
- center_and_strides[:, :-2], pos_inds, axis=0) / stride
- weight_targets = F.sigmoid(cls_score.detach())
- weight_targets = paddle.gather(
- weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)
- pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
- pos_decode_bbox_pred = distance2bbox(pos_centers,
- pos_bbox_pred_corners)
- pos_decode_bbox_targets = pos_bbox_targets / stride
- bbox_iou = bbox_overlaps(
- pos_decode_bbox_pred.detach().numpy(),
- pos_decode_bbox_targets.detach().numpy(),
- is_aligned=True)
- score[pos_inds.numpy()] = bbox_iou
- pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
- target_corners = bbox2distance(pos_centers,
- pos_decode_bbox_targets,
- self.reg_max).reshape([-1])
- # regression loss
- loss_bbox = paddle.sum(
- self.loss_bbox(pos_decode_bbox_pred,
- pos_decode_bbox_targets) * weight_targets)
- # dfl loss
- loss_dfl = self.loss_dfl(
- pred_corners,
- target_corners,
- weight=weight_targets.expand([-1, 4]).reshape([-1]),
- avg_factor=4.0)
- else:
- loss_bbox = bbox_pred.sum() * 0
- loss_dfl = bbox_pred.sum() * 0
- weight_targets = paddle.to_tensor([0], dtype='float32')
- # qfl loss
- score = paddle.to_tensor(score)
- loss_qfl = self.loss_qfl(
- cls_score, (labels, score),
- weight=label_weights,
- avg_factor=num_total_pos)
- loss_bbox_list.append(loss_bbox)
- loss_dfl_list.append(loss_dfl)
- loss_qfl_list.append(loss_qfl)
- avg_factor.append(weight_targets.sum())
- avg_factor = sum(avg_factor)
- try:
- paddle.distributed.all_reduce(avg_factor)
- avg_factor = paddle.clip(
- avg_factor / paddle.distributed.get_world_size(), min=1)
- except:
- avg_factor = max(avg_factor.item(), 1)
- if avg_factor <= 0:
- loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- loss_bbox = paddle.to_tensor(
- 0, dtype='float32', stop_gradient=False)
- loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- else:
- losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
- losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
- loss_qfl = sum(loss_qfl_list)
- loss_bbox = sum(losses_bbox)
- loss_dfl = sum(losses_dfl)
- loss_states = dict(
- loss_qfl=loss_qfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)
- return loss_states
- @register
- class OTAVFLHead(OTAHead):
- __inject__ = [
- 'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
- 'assigner', 'nms'
- ]
- __shared__ = ['num_classes']
- def __init__(self,
- conv_feat='FCOSFeat',
- dgqp_module=None,
- num_classes=80,
- fpn_stride=[8, 16, 32, 64, 128],
- prior_prob=0.01,
- loss_class='VarifocalLoss',
- loss_dfl='DistributionFocalLoss',
- loss_bbox='GIoULoss',
- assigner='SimOTAAssigner',
- reg_max=16,
- feat_in_chan=256,
- nms=None,
- nms_pre=1000,
- cell_offset=0):
- super(OTAVFLHead, self).__init__(
- conv_feat=conv_feat,
- dgqp_module=dgqp_module,
- num_classes=num_classes,
- fpn_stride=fpn_stride,
- prior_prob=prior_prob,
- loss_class=loss_class,
- loss_dfl=loss_dfl,
- loss_bbox=loss_bbox,
- reg_max=reg_max,
- feat_in_chan=feat_in_chan,
- nms=nms,
- nms_pre=nms_pre,
- cell_offset=cell_offset)
- self.conv_feat = conv_feat
- self.dgqp_module = dgqp_module
- self.num_classes = num_classes
- self.fpn_stride = fpn_stride
- self.prior_prob = prior_prob
- self.loss_vfl = loss_class
- self.loss_dfl = loss_dfl
- self.loss_bbox = loss_bbox
- self.reg_max = reg_max
- self.feat_in_chan = feat_in_chan
- self.nms = nms
- self.nms_pre = nms_pre
- self.cell_offset = cell_offset
- self.use_sigmoid = self.loss_vfl.use_sigmoid
- self.assigner = assigner
- def get_loss(self, head_outs, gt_meta):
- cls_scores, bbox_preds = head_outs
- num_level_anchors = [
- featmap.shape[-2] * featmap.shape[-1] for featmap in cls_scores
- ]
- num_imgs = gt_meta['im_id'].shape[0]
- featmap_sizes = [[featmap.shape[-2], featmap.shape[-1]]
- for featmap in cls_scores]
- decode_bbox_preds = []
- center_and_strides = []
- for featmap_size, stride, bbox_pred in zip(featmap_sizes,
- self.fpn_stride, bbox_preds):
- # center in origin image
- yy, xx = self.get_single_level_center_point(featmap_size, stride,
- self.cell_offset)
- strides = paddle.full((len(xx), ), stride)
- center_and_stride = paddle.stack([xx, yy, strides, strides],
- -1).tile([num_imgs, 1, 1])
- center_and_strides.append(center_and_stride)
- center_in_feature = center_and_stride.reshape(
- [-1, 4])[:, :-2] / stride
- bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
- [num_imgs, -1, 4 * (self.reg_max + 1)])
- pred_distances = self.distribution_project(bbox_pred)
- decode_bbox_pred_wo_stride = distance2bbox(
- center_in_feature, pred_distances).reshape([num_imgs, -1, 4])
- decode_bbox_preds.append(decode_bbox_pred_wo_stride * stride)
- flatten_cls_preds = [
- cls_pred.transpose([0, 2, 3, 1]).reshape(
- [num_imgs, -1, self.cls_out_channels])
- for cls_pred in cls_scores
- ]
- flatten_cls_preds = paddle.concat(flatten_cls_preds, axis=1)
- flatten_bboxes = paddle.concat(decode_bbox_preds, axis=1)
- flatten_center_and_strides = paddle.concat(center_and_strides, axis=1)
- gt_boxes, gt_labels = gt_meta['gt_bbox'], gt_meta['gt_class']
- pos_num_l, label_l, label_weight_l, bbox_target_l = [], [], [], []
- for flatten_cls_pred, flatten_center_and_stride, flatten_bbox,gt_box,gt_label \
- in zip(flatten_cls_preds.detach(), flatten_center_and_strides.detach(), \
- flatten_bboxes.detach(),gt_boxes,gt_labels):
- pos_num, label, label_weight, bbox_target = self._get_target_single(
- flatten_cls_pred, flatten_center_and_stride, flatten_bbox,
- gt_box, gt_label)
- pos_num_l.append(pos_num)
- label_l.append(label)
- label_weight_l.append(label_weight)
- bbox_target_l.append(bbox_target)
- labels = paddle.to_tensor(np.stack(label_l, axis=0))
- label_weights = paddle.to_tensor(np.stack(label_weight_l, axis=0))
- bbox_targets = paddle.to_tensor(np.stack(bbox_target_l, axis=0))
- center_and_strides_list = self._images_to_levels(
- flatten_center_and_strides, num_level_anchors)
- labels_list = self._images_to_levels(labels, num_level_anchors)
- label_weights_list = self._images_to_levels(label_weights,
- num_level_anchors)
- bbox_targets_list = self._images_to_levels(bbox_targets,
- num_level_anchors)
- num_total_pos = sum(pos_num_l)
- try:
- paddle.distributed.all_reduce(num_total_pos)
- num_total_pos = paddle.clip(
- num_total_pos / paddle.distributed.get_world_size(), min=1.)
- except:
- num_total_pos = max(num_total_pos, 1)
- loss_bbox_list, loss_dfl_list, loss_vfl_list, avg_factor = [], [], [], []
- for cls_score, bbox_pred, center_and_strides, labels, label_weights, bbox_targets, stride in zip(
- cls_scores, bbox_preds, center_and_strides_list, labels_list,
- label_weights_list, bbox_targets_list, self.fpn_stride):
- center_and_strides = center_and_strides.reshape([-1, 4])
- cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
- [-1, self.cls_out_channels])
- bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
- [-1, 4 * (self.reg_max + 1)])
- bbox_targets = bbox_targets.reshape([-1, 4])
- labels = labels.reshape([-1])
- bg_class_ind = self.num_classes
- pos_inds = paddle.nonzero(
- paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
- as_tuple=False).squeeze(1)
- # vfl
- vfl_score = np.zeros(cls_score.shape)
- if len(pos_inds) > 0:
- pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
- pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
- pos_centers = paddle.gather(
- center_and_strides[:, :-2], pos_inds, axis=0) / stride
- weight_targets = F.sigmoid(cls_score.detach())
- weight_targets = paddle.gather(
- weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)
- pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
- pos_decode_bbox_pred = distance2bbox(pos_centers,
- pos_bbox_pred_corners)
- pos_decode_bbox_targets = pos_bbox_targets / stride
- bbox_iou = bbox_overlaps(
- pos_decode_bbox_pred.detach().numpy(),
- pos_decode_bbox_targets.detach().numpy(),
- is_aligned=True)
- # vfl
- pos_labels = paddle.gather(labels, pos_inds, axis=0)
- vfl_score[pos_inds.numpy(), pos_labels] = bbox_iou
- pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
- target_corners = bbox2distance(pos_centers,
- pos_decode_bbox_targets,
- self.reg_max).reshape([-1])
- # regression loss
- loss_bbox = paddle.sum(
- self.loss_bbox(pos_decode_bbox_pred,
- pos_decode_bbox_targets) * weight_targets)
- # dfl loss
- loss_dfl = self.loss_dfl(
- pred_corners,
- target_corners,
- weight=weight_targets.expand([-1, 4]).reshape([-1]),
- avg_factor=4.0)
- else:
- loss_bbox = bbox_pred.sum() * 0
- loss_dfl = bbox_pred.sum() * 0
- weight_targets = paddle.to_tensor([0], dtype='float32')
- # vfl loss
- num_pos_avg_per_gpu = num_total_pos
- vfl_score = paddle.to_tensor(vfl_score)
- loss_vfl = self.loss_vfl(
- cls_score, vfl_score, avg_factor=num_pos_avg_per_gpu)
- loss_bbox_list.append(loss_bbox)
- loss_dfl_list.append(loss_dfl)
- loss_vfl_list.append(loss_vfl)
- avg_factor.append(weight_targets.sum())
- avg_factor = sum(avg_factor)
- try:
- paddle.distributed.all_reduce(avg_factor)
- avg_factor = paddle.clip(
- avg_factor / paddle.distributed.get_world_size(), min=1)
- except:
- avg_factor = max(avg_factor.item(), 1)
- if avg_factor <= 0:
- loss_vfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- loss_bbox = paddle.to_tensor(
- 0, dtype='float32', stop_gradient=False)
- loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- else:
- losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
- losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
- loss_vfl = sum(loss_vfl_list)
- loss_bbox = sum(losses_bbox)
- loss_dfl = sum(losses_dfl)
- loss_states = dict(
- loss_vfl=loss_vfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)
- return loss_states
|