123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from ..losses import ProbIoULoss
- from ..initializer import bias_init_with_prob, constant_, normal_, vector_
- from ppdet.modeling.backbones.cspresnet import ConvBNLayer
- from ppdet.modeling.ops import get_static_shape, get_act_fn, anchor_generator
- from ppdet.modeling.layers import MultiClassNMS
- __all__ = ['PPYOLOERHead']
- class ESEAttn(nn.Layer):
- def __init__(self, feat_channels, act='swish'):
- super(ESEAttn, self).__init__()
- self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
- self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act)
- self._init_weights()
- def _init_weights(self):
- normal_(self.fc.weight, std=0.01)
- def forward(self, feat, avg_feat):
- weight = F.sigmoid(self.fc(avg_feat))
- return self.conv(feat * weight)
- @register
- class PPYOLOERHead(nn.Layer):
- __shared__ = ['num_classes', 'trt', 'export_onnx']
- __inject__ = ['static_assigner', 'assigner', 'nms']
- def __init__(self,
- in_channels=[1024, 512, 256],
- num_classes=15,
- act='swish',
- fpn_strides=(32, 16, 8),
- grid_cell_offset=0.5,
- angle_max=90,
- use_varifocal_loss=True,
- static_assigner_epoch=4,
- trt=False,
- export_onnx=False,
- static_assigner='ATSSAssigner',
- assigner='TaskAlignedAssigner',
- nms='MultiClassNMS',
- loss_weight={'class': 1.0,
- 'iou': 2.5,
- 'dfl': 0.05}):
- super(PPYOLOERHead, self).__init__()
- assert len(in_channels) > 0, "len(in_channels) should > 0"
- self.in_channels = in_channels
- self.num_classes = num_classes
- self.fpn_strides = fpn_strides
- self.grid_cell_offset = grid_cell_offset
- self.angle_max = angle_max
- self.loss_weight = loss_weight
- self.use_varifocal_loss = use_varifocal_loss
- self.half_pi = paddle.to_tensor(
- [1.5707963267948966], dtype=paddle.float32)
- self.half_pi_bin = self.half_pi / angle_max
- self.iou_loss = ProbIoULoss()
- self.static_assigner_epoch = static_assigner_epoch
- self.static_assigner = static_assigner
- self.assigner = assigner
- self.nms = nms
- # stem
- self.stem_cls = nn.LayerList()
- self.stem_reg = nn.LayerList()
- self.stem_angle = nn.LayerList()
- trt = False if export_onnx else trt
- self.export_onnx = export_onnx
- act = get_act_fn(
- act, trt=trt) if act is None or isinstance(act,
- (str, dict)) else act
- self.trt = trt
- for in_c in self.in_channels:
- self.stem_cls.append(ESEAttn(in_c, act=act))
- self.stem_reg.append(ESEAttn(in_c, act=act))
- self.stem_angle.append(ESEAttn(in_c, act=act))
- # pred head
- self.pred_cls = nn.LayerList()
- self.pred_reg = nn.LayerList()
- self.pred_angle = nn.LayerList()
- for in_c in self.in_channels:
- self.pred_cls.append(
- nn.Conv2D(
- in_c, self.num_classes, 3, padding=1))
- self.pred_reg.append(nn.Conv2D(in_c, 4, 3, padding=1))
- self.pred_angle.append(
- nn.Conv2D(
- in_c, self.angle_max + 1, 3, padding=1))
- self.angle_proj_conv = nn.Conv2D(
- self.angle_max + 1, 1, 1, bias_attr=False)
- self._init_weights()
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- def _init_weights(self):
- bias_cls = bias_init_with_prob(0.01)
- bias_angle = [10.] + [1.] * self.angle_max
- for cls_, reg_, angle_ in zip(self.pred_cls, self.pred_reg,
- self.pred_angle):
- normal_(cls_.weight, std=0.01)
- constant_(cls_.bias, bias_cls)
- normal_(reg_.weight, std=0.01)
- constant_(reg_.bias)
- constant_(angle_.weight)
- vector_(angle_.bias, bias_angle)
- angle_proj = paddle.linspace(0, self.angle_max, self.angle_max + 1)
- self.angle_proj = angle_proj * self.half_pi_bin
- self.angle_proj_conv.weight.set_value(
- self.angle_proj.reshape([1, self.angle_max + 1, 1, 1]))
- self.angle_proj_conv.weight.stop_gradient = True
- def _generate_anchors(self, feats):
- if self.trt:
- anchor_points = []
- for feat, stride in zip(feats, self.fpn_strides):
- _, _, h, w = paddle.shape(feat)
- anchor, _ = anchor_generator(
- feat,
- stride * 4,
- 1.0, [1.0, 1.0, 1.0, 1.0], [stride, stride],
- offset=0.5)
- x1, y1, x2, y2 = paddle.split(anchor, 4, axis=-1)
- xc = (x1 + x2 + 1) / 2
- yc = (y1 + y2 + 1) / 2
- anchor_point = paddle.concat(
- [xc, yc], axis=-1).reshape((1, h * w, 2))
- anchor_points.append(anchor_point)
- anchor_points = paddle.concat(anchor_points, axis=1)
- return anchor_points, None, None
- else:
- anchor_points = []
- stride_tensor = []
- num_anchors_list = []
- for feat, stride in zip(feats, self.fpn_strides):
- _, _, h, w = paddle.shape(feat)
- shift_x = (paddle.arange(end=w) + 0.5) * stride
- shift_y = (paddle.arange(end=h) + 0.5) * stride
- shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
- anchor_point = paddle.cast(
- paddle.stack(
- [shift_x, shift_y], axis=-1), dtype='float32')
- anchor_points.append(anchor_point.reshape([1, -1, 2]))
- stride_tensor.append(
- paddle.full(
- [1, h * w, 1], stride, dtype='float32'))
- num_anchors_list.append(h * w)
- anchor_points = paddle.concat(anchor_points, axis=1)
- stride_tensor = paddle.concat(stride_tensor, axis=1)
- return anchor_points, stride_tensor, num_anchors_list
- def forward(self, feats, targets=None):
- assert len(feats) == len(self.fpn_strides), \
- "The size of feats is not equal to size of fpn_strides"
- if self.training:
- return self.forward_train(feats, targets)
- else:
- return self.forward_eval(feats)
- def forward_train(self, feats, targets):
- anchor_points, stride_tensor, num_anchors_list = self._generate_anchors(
- feats)
- cls_score_list, reg_dist_list, reg_angle_list = [], [], []
- for i, feat in enumerate(feats):
- avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
- cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
- feat)
- reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
- reg_angle = self.pred_angle[i](self.stem_angle[i](feat, avg_feat))
- # cls and reg
- cls_score = F.sigmoid(cls_logit)
- cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
- reg_dist_list.append(reg_dist.flatten(2).transpose([0, 2, 1]))
- reg_angle_list.append(reg_angle.flatten(2).transpose([0, 2, 1]))
- cls_score_list = paddle.concat(cls_score_list, axis=1)
- reg_dist_list = paddle.concat(reg_dist_list, axis=1)
- reg_angle_list = paddle.concat(reg_angle_list, axis=1)
- return self.get_loss([
- cls_score_list, reg_dist_list, reg_angle_list, anchor_points,
- num_anchors_list, stride_tensor
- ], targets)
- def forward_eval(self, feats):
- cls_score_list, reg_box_list = [], []
- anchor_points, _, _ = self._generate_anchors(feats)
- for i, (feat, stride) in enumerate(zip(feats, self.fpn_strides)):
- b, _, h, w = paddle.shape(feat)
- l = h * w
- # cls
- avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
- cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
- feat)
- # reg
- reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
- reg_xy, reg_wh = paddle.split(reg_dist, 2, axis=1)
- reg_xy = reg_xy * stride
- reg_wh = (F.elu(reg_wh) + 1.) * stride
- reg_angle = self.pred_angle[i](self.stem_angle[i](feat, avg_feat))
- reg_angle = self.angle_proj_conv(F.softmax(reg_angle, axis=1))
- reg_box = paddle.concat([reg_xy, reg_wh, reg_angle], axis=1)
- # cls and reg
- cls_score = F.sigmoid(cls_logit)
- cls_score_list.append(cls_score.reshape([b, self.num_classes, l]))
- reg_box_list.append(reg_box.reshape([b, 5, l]))
- cls_score_list = paddle.concat(cls_score_list, axis=-1)
- reg_box_list = paddle.concat(reg_box_list, axis=-1).transpose([0, 2, 1])
- reg_xy, reg_wha = paddle.split(reg_box_list, [2, 3], axis=-1)
- reg_xy = reg_xy + anchor_points
- reg_box_list = paddle.concat([reg_xy, reg_wha], axis=-1)
- return cls_score_list, reg_box_list
- def _bbox_decode(self, points, pred_dist, pred_angle, stride_tensor):
- # predict vector to x, y, w, h, angle
- b, l = pred_angle.shape[:2]
- xy, wh = paddle.split(pred_dist, 2, axis=-1)
- xy = xy * stride_tensor + points
- wh = (F.elu(wh) + 1.) * stride_tensor
- angle = F.softmax(pred_angle.reshape([b, l, 1, self.angle_max + 1
- ])).matmul(self.angle_proj)
- return paddle.concat([xy, wh, angle], axis=-1)
- def get_loss(self, head_outs, gt_meta):
- pred_scores, pred_dist, pred_angle, \
- anchor_points, num_anchors_list, stride_tensor = head_outs
- # [B, N, 5] -> [B, N, 5]
- pred_bboxes = self._bbox_decode(anchor_points, pred_dist, pred_angle,
- stride_tensor)
- gt_labels = gt_meta['gt_class']
- # [B, N, 5]
- gt_bboxes = gt_meta['gt_rbox']
- pad_gt_mask = gt_meta['pad_gt_mask']
- # label assignment
- if gt_meta['epoch_id'] < self.static_assigner_epoch:
- assigned_labels, assigned_bboxes, assigned_scores = \
- self.static_assigner(
- anchor_points,
- stride_tensor,
- num_anchors_list,
- gt_labels,
- gt_meta['gt_bbox'],
- gt_bboxes,
- pad_gt_mask,
- self.num_classes,
- pred_bboxes.detach()
- )
- else:
- assigned_labels, assigned_bboxes, assigned_scores = \
- self.assigner(
- pred_scores.detach(),
- pred_bboxes.detach(),
- anchor_points,
- num_anchors_list,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index=self.num_classes)
- alpha_l = -1
- # cls loss
- if self.use_varifocal_loss:
- one_hot_label = F.one_hot(assigned_labels,
- self.num_classes + 1)[..., :-1]
- loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
- one_hot_label)
- else:
- loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)
- assigned_scores_sum = assigned_scores.sum()
- if paddle.distributed.get_world_size() > 1:
- paddle.distributed.all_reduce(assigned_scores_sum)
- assigned_scores_sum = paddle.clip(
- assigned_scores_sum / paddle.distributed.get_world_size(),
- min=1.)
- else:
- assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
- loss_cls /= assigned_scores_sum
- loss_iou, loss_dfl = self._bbox_loss(pred_angle, pred_bboxes,
- anchor_points, assigned_labels,
- assigned_bboxes, assigned_scores,
- assigned_scores_sum, stride_tensor)
- loss = self.loss_weight['class'] * loss_cls + \
- self.loss_weight['iou'] * loss_iou + \
- self.loss_weight['dfl'] * loss_dfl
- out_dict = {
- 'loss': loss,
- 'loss_cls': loss_cls,
- 'loss_iou': loss_iou,
- 'loss_dfl': loss_dfl
- }
- return out_dict
- @staticmethod
- def _focal_loss(score, label, alpha=0.25, gamma=2.0):
- weight = (score - label).pow(gamma)
- if alpha > 0:
- alpha_t = alpha * label + (1 - alpha) * (1 - label)
- weight *= alpha_t
- loss = F.binary_cross_entropy(
- score, label, weight=weight, reduction='sum')
- return loss
- @staticmethod
- def _varifocal_loss(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
- weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
- loss = F.binary_cross_entropy(
- pred_score, gt_score, weight=weight, reduction='sum')
- return loss
- @staticmethod
- def _df_loss(pred_dist, target):
- target_left = paddle.cast(target, 'int64')
- target_right = target_left + 1
- weight_left = target_right.astype('float32') - target
- weight_right = 1 - weight_left
- loss_left = F.cross_entropy(
- pred_dist, target_left, reduction='none') * weight_left
- loss_right = F.cross_entropy(
- pred_dist, target_right, reduction='none') * weight_right
- return (loss_left + loss_right).mean(-1, keepdim=True)
- def _bbox_loss(self, pred_angle, pred_bboxes, anchor_points,
- assigned_labels, assigned_bboxes, assigned_scores,
- assigned_scores_sum, stride_tensor):
- # select positive samples mask
- mask_positive = (assigned_labels != self.num_classes)
- num_pos = mask_positive.sum()
- # pos/neg loss
- if num_pos > 0:
- # iou
- bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 5])
- pred_bboxes_pos = paddle.masked_select(pred_bboxes,
- bbox_mask).reshape([-1, 5])
- assigned_bboxes_pos = paddle.masked_select(
- assigned_bboxes, bbox_mask).reshape([-1, 5])
- bbox_weight = paddle.masked_select(
- assigned_scores.sum(-1), mask_positive).reshape([-1])
- loss_iou = self.iou_loss(pred_bboxes_pos,
- assigned_bboxes_pos) * bbox_weight
- loss_iou = loss_iou.sum() / assigned_scores_sum
- # dfl
- angle_mask = mask_positive.unsqueeze(-1).tile(
- [1, 1, self.angle_max + 1])
- pred_angle_pos = paddle.masked_select(
- pred_angle, angle_mask).reshape([-1, self.angle_max + 1])
- assigned_angle_pos = (
- assigned_bboxes_pos[:, 4] /
- self.half_pi_bin).clip(0, self.angle_max - 0.01)
- loss_dfl = self._df_loss(pred_angle_pos, assigned_angle_pos)
- else:
- loss_iou = pred_bboxes.sum() * 0.
- loss_dfl = paddle.zeros([1])
- return loss_iou, loss_dfl
- def _box2corners(self, pred_bboxes):
- """ convert (x, y, w, h, angle) to (x1, y1, x2, y2, x3, y3, x4, y4)
- Args:
- pred_bboxes (Tensor): [B, N, 5]
-
- Returns:
- polys (Tensor): [B, N, 8]
- """
- x, y, w, h, angle = paddle.split(pred_bboxes, 5, axis=-1)
- cos_a_half = paddle.cos(angle) * 0.5
- sin_a_half = paddle.sin(angle) * 0.5
- w_x = cos_a_half * w
- w_y = sin_a_half * w
- h_x = -sin_a_half * h
- h_y = cos_a_half * h
- return paddle.concat(
- [
- x + w_x + h_x, y + w_y + h_y, x - w_x + h_x, y - w_y + h_y,
- x - w_x - h_x, y - w_y - h_y, x + w_x - h_x, y + w_y - h_y
- ],
- axis=-1)
- def post_process(self, head_outs, scale_factor):
- pred_scores, pred_bboxes = head_outs
- # [B, N, 5] -> [B, N, 8]
- pred_bboxes = self._box2corners(pred_bboxes)
- # scale bbox to origin
- scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
- scale_factor = paddle.concat(
- [
- scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
- scale_y
- ],
- axis=-1).reshape([-1, 1, 8])
- pred_bboxes /= scale_factor
- if self.export_onnx:
- return pred_bboxes, pred_scores
- bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
- return bbox_pred, bbox_num
|