123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is based on:
- # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/sim_ota_assigner.py
- import paddle
- import numpy as np
- import paddle.nn.functional as F
- from ppdet.modeling.losses.varifocal_loss import varifocal_loss
- from ppdet.modeling.bbox_utils import batch_bbox_overlaps
- from ppdet.core.workspace import register
- @register
- class SimOTAAssigner(object):
- """Computes matching between predictions and ground truth.
- Args:
- center_radius (int | float, optional): Ground truth center size
- to judge whether a prior is in center. Default 2.5.
- candidate_topk (int, optional): The candidate top-k which used to
- get top-k ious to calculate dynamic-k. Default 10.
- iou_weight (int | float, optional): The scale factor for regression
- iou cost. Default 3.0.
- cls_weight (int | float, optional): The scale factor for classification
- cost. Default 1.0.
- num_classes (int): The num_classes of dataset.
- use_vfl (int): Whether to use varifocal_loss when calculating the cost matrix.
- """
- __shared__ = ['num_classes']
- def __init__(self,
- center_radius=2.5,
- candidate_topk=10,
- iou_weight=3.0,
- cls_weight=1.0,
- num_classes=80,
- use_vfl=True):
- self.center_radius = center_radius
- self.candidate_topk = candidate_topk
- self.iou_weight = iou_weight
- self.cls_weight = cls_weight
- self.num_classes = num_classes
- self.use_vfl = use_vfl
- def get_in_gt_and_in_center_info(self, flatten_center_and_stride,
- gt_bboxes):
- num_gt = gt_bboxes.shape[0]
- flatten_x = flatten_center_and_stride[:, 0].unsqueeze(1).tile(
- [1, num_gt])
- flatten_y = flatten_center_and_stride[:, 1].unsqueeze(1).tile(
- [1, num_gt])
- flatten_stride_x = flatten_center_and_stride[:, 2].unsqueeze(1).tile(
- [1, num_gt])
- flatten_stride_y = flatten_center_and_stride[:, 3].unsqueeze(1).tile(
- [1, num_gt])
- # is prior centers in gt bboxes, shape: [n_center, n_gt]
- l_ = flatten_x - gt_bboxes[:, 0]
- t_ = flatten_y - gt_bboxes[:, 1]
- r_ = gt_bboxes[:, 2] - flatten_x
- b_ = gt_bboxes[:, 3] - flatten_y
- deltas = paddle.stack([l_, t_, r_, b_], axis=1)
- is_in_gts = deltas.min(axis=1) > 0
- is_in_gts_all = is_in_gts.sum(axis=1) > 0
- # is prior centers in gt centers
- gt_center_xs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
- gt_center_ys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
- ct_bound_l = gt_center_xs - self.center_radius * flatten_stride_x
- ct_bound_t = gt_center_ys - self.center_radius * flatten_stride_y
- ct_bound_r = gt_center_xs + self.center_radius * flatten_stride_x
- ct_bound_b = gt_center_ys + self.center_radius * flatten_stride_y
- cl_ = flatten_x - ct_bound_l
- ct_ = flatten_y - ct_bound_t
- cr_ = ct_bound_r - flatten_x
- cb_ = ct_bound_b - flatten_y
- ct_deltas = paddle.stack([cl_, ct_, cr_, cb_], axis=1)
- is_in_cts = ct_deltas.min(axis=1) > 0
- is_in_cts_all = is_in_cts.sum(axis=1) > 0
- # in any of gts or gt centers, shape: [n_center]
- is_in_gts_or_centers_all = paddle.logical_or(is_in_gts_all,
- is_in_cts_all)
- is_in_gts_or_centers_all_inds = paddle.nonzero(
- is_in_gts_or_centers_all).squeeze(1)
- # both in gts and gt centers, shape: [num_fg, num_gt]
- is_in_gts_and_centers = paddle.logical_and(
- paddle.gather(
- is_in_gts.cast('int'), is_in_gts_or_centers_all_inds,
- axis=0).cast('bool'),
- paddle.gather(
- is_in_cts.cast('int'), is_in_gts_or_centers_all_inds,
- axis=0).cast('bool'))
- return is_in_gts_or_centers_all, is_in_gts_or_centers_all_inds, is_in_gts_and_centers
- def dynamic_k_matching(self, cost_matrix, pairwise_ious, num_gt):
- match_matrix = np.zeros_like(cost_matrix.numpy())
- # select candidate topk ious for dynamic-k calculation
- topk_ious, _ = paddle.topk(
- pairwise_ious,
- min(self.candidate_topk, pairwise_ious.shape[0]),
- axis=0)
- # calculate dynamic k for each gt
- dynamic_ks = paddle.clip(topk_ious.sum(0).cast('int'), min=1)
- for gt_idx in range(num_gt):
- _, pos_idx = paddle.topk(
- cost_matrix[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
- match_matrix[:, gt_idx][pos_idx.numpy()] = 1.0
- del topk_ious, dynamic_ks, pos_idx
- # match points more than two gts
- extra_match_gts_mask = match_matrix.sum(1) > 1
- if extra_match_gts_mask.sum() > 0:
- cost_matrix = cost_matrix.numpy()
- cost_argmin = np.argmin(
- cost_matrix[extra_match_gts_mask, :], axis=1)
- match_matrix[extra_match_gts_mask, :] *= 0.0
- match_matrix[extra_match_gts_mask, cost_argmin] = 1.0
- # get foreground mask
- match_fg_mask_inmatrix = match_matrix.sum(1) > 0
- match_gt_inds_to_fg = match_matrix[match_fg_mask_inmatrix, :].argmax(1)
- return match_gt_inds_to_fg, match_fg_mask_inmatrix
- def get_sample(self, assign_gt_inds, gt_bboxes):
- pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0])
- neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0])
- pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1
- if gt_bboxes.size == 0:
- # hack for index error case
- assert pos_assigned_gt_inds.size == 0
- pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4)
- else:
- if len(gt_bboxes.shape) < 2:
- gt_bboxes = gt_bboxes.resize(-1, 4)
- pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :]
- return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds
- def __call__(self,
- flatten_cls_pred_scores,
- flatten_center_and_stride,
- flatten_bboxes,
- gt_bboxes,
- gt_labels,
- eps=1e-7):
- """Assign gt to priors using SimOTA.
- TODO: add comment.
- Returns:
- assign_result: The assigned result.
- """
- num_gt = gt_bboxes.shape[0]
- num_bboxes = flatten_bboxes.shape[0]
- if num_gt == 0 or num_bboxes == 0:
- # No ground truth or boxes
- label = np.ones([num_bboxes], dtype=np.int64) * self.num_classes
- label_weight = np.ones([num_bboxes], dtype=np.float32)
- bbox_target = np.zeros_like(flatten_center_and_stride)
- return 0, label, label_weight, bbox_target
- is_in_gts_or_centers_all, is_in_gts_or_centers_all_inds, is_in_boxes_and_center = self.get_in_gt_and_in_center_info(
- flatten_center_and_stride, gt_bboxes)
- # bboxes and scores to calculate matrix
- valid_flatten_bboxes = flatten_bboxes[is_in_gts_or_centers_all_inds]
- valid_cls_pred_scores = flatten_cls_pred_scores[
- is_in_gts_or_centers_all_inds]
- num_valid_bboxes = valid_flatten_bboxes.shape[0]
- pairwise_ious = batch_bbox_overlaps(valid_flatten_bboxes,
- gt_bboxes) # [num_points,num_gts]
- if self.use_vfl:
- gt_vfl_labels = gt_labels.squeeze(-1).unsqueeze(0).tile(
- [num_valid_bboxes, 1]).reshape([-1])
- valid_pred_scores = valid_cls_pred_scores.unsqueeze(1).tile(
- [1, num_gt, 1]).reshape([-1, self.num_classes])
- vfl_score = np.zeros(valid_pred_scores.shape)
- vfl_score[np.arange(0, vfl_score.shape[0]), gt_vfl_labels.numpy(
- )] = pairwise_ious.reshape([-1])
- vfl_score = paddle.to_tensor(vfl_score)
- losses_vfl = varifocal_loss(
- valid_pred_scores, vfl_score,
- use_sigmoid=False).reshape([num_valid_bboxes, num_gt])
- losses_giou = batch_bbox_overlaps(
- valid_flatten_bboxes, gt_bboxes, mode='giou')
- cost_matrix = (
- losses_vfl * self.cls_weight + losses_giou * self.iou_weight +
- paddle.logical_not(is_in_boxes_and_center).cast('float32') *
- 100000000)
- else:
- iou_cost = -paddle.log(pairwise_ious + eps)
- gt_onehot_label = (F.one_hot(
- gt_labels.squeeze(-1).cast(paddle.int64),
- flatten_cls_pred_scores.shape[-1]).cast('float32').unsqueeze(0)
- .tile([num_valid_bboxes, 1, 1]))
- valid_pred_scores = valid_cls_pred_scores.unsqueeze(1).tile(
- [1, num_gt, 1])
- cls_cost = F.binary_cross_entropy(
- valid_pred_scores, gt_onehot_label, reduction='none').sum(-1)
- cost_matrix = (
- cls_cost * self.cls_weight + iou_cost * self.iou_weight +
- paddle.logical_not(is_in_boxes_and_center).cast('float32') *
- 100000000)
- match_gt_inds_to_fg, match_fg_mask_inmatrix = \
- self.dynamic_k_matching(
- cost_matrix, pairwise_ious, num_gt)
- # sample and assign results
- assigned_gt_inds = np.zeros([num_bboxes], dtype=np.int64)
- match_fg_mask_inall = np.zeros_like(assigned_gt_inds)
- match_fg_mask_inall[is_in_gts_or_centers_all.numpy(
- )] = match_fg_mask_inmatrix
- assigned_gt_inds[match_fg_mask_inall.astype(
- np.bool_)] = match_gt_inds_to_fg + 1
- pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds \
- = self.get_sample(assigned_gt_inds, gt_bboxes.numpy())
- bbox_target = np.zeros_like(flatten_bboxes)
- bbox_weight = np.zeros_like(flatten_bboxes)
- label = np.ones([num_bboxes], dtype=np.int64) * self.num_classes
- label_weight = np.zeros([num_bboxes], dtype=np.float32)
- if len(pos_inds) > 0:
- gt_labels = gt_labels.numpy()
- pos_bbox_targets = pos_gt_bboxes
- bbox_target[pos_inds, :] = pos_bbox_targets
- bbox_weight[pos_inds, :] = 1.0
- if not np.any(gt_labels):
- label[pos_inds] = 0
- else:
- label[pos_inds] = gt_labels.squeeze(-1)[pos_assigned_gt_inds]
- label_weight[pos_inds] = 1.0
- if len(neg_inds) > 0:
- label_weight[neg_inds] = 1.0
- pos_num = max(pos_inds.size, 1)
- return pos_num, label, label_weight, bbox_target
|