1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- import copy
- import time
- from tqdm import tqdm
- import numpy as np
- import typing
- from PIL import Image, ImageOps, ImageFile
- ImageFile.LOAD_TRUNCATED_IMAGES = True
- import paddle
- import paddle.nn as nn
- import paddle.distributed as dist
- from paddle.distributed import fleet
- from paddle.static import InputSpec
- from ppdet.optimizer import ModelEMA
- from ppdet.core.workspace import create
- from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
- from ppdet.utils.visualizer import visualize_results, save_result
- from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval, Pose3DEval
- from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
- from ppdet.data.source.sniper_coco import SniperCOCODataSet
- from ppdet.data.source.category import get_categories
- import ppdet.utils.stats as stats
- from ppdet.utils.fuse_utils import fuse_conv_bn
- from ppdet.utils import profiler
- from ppdet.modeling.post_process import multiclass_nms
- from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
- from .export_utils import _dump_infer_config, _prune_input_spec, apply_to_static
- from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients
- from ppdet.utils.logger import setup_logger
- logger = setup_logger('ppdet.engine')
- __all__ = ['Trainer']
- MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
- class Trainer(object):
- def __init__(self, cfg, mode='train'):
- self.cfg = cfg
- assert mode.lower() in ['train', 'eval', 'test'], \
- "mode should be 'train', 'eval' or 'test'"
- self.mode = mode.lower()
- self.optimizer = None
- self.is_loaded_weights = False
- self.use_amp = self.cfg.get('amp', False)
- self.amp_level = self.cfg.get('amp_level', 'O1')
- self.custom_white_list = self.cfg.get('custom_white_list', None)
- self.custom_black_list = self.cfg.get('custom_black_list', None)
- # build data loader
- capital_mode = self.mode.capitalize()
- if cfg.architecture in MOT_ARCH and self.mode in [
- 'eval', 'test'
- ] and cfg.metric not in ['COCO', 'VOC']:
- self.dataset = self.cfg['{}MOTDataset'.format(
- capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
- else:
- self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
- '{}Dataset'.format(capital_mode))()
- if cfg.architecture == 'DeepSORT' and self.mode == 'train':
- logger.error('DeepSORT has no need of training on mot dataset.')
- sys.exit(1)
- if cfg.architecture == 'FairMOT' and self.mode == 'eval':
- images = self.parse_mot_images(cfg)
- self.dataset.set_images(images)
- if self.mode == 'train':
- self.loader = create('{}Reader'.format(capital_mode))(
- self.dataset, cfg.worker_num)
- if cfg.architecture == 'JDE' and self.mode == 'train':
- cfg['JDEEmbeddingHead'][
- 'num_identities'] = self.dataset.num_identities_dict[0]
- # JDE only support single class MOT now.
- if cfg.architecture == 'FairMOT' and self.mode == 'train':
- cfg['FairMOTEmbeddingHead'][
- 'num_identities_dict'] = self.dataset.num_identities_dict
- # FairMOT support single class and multi-class MOT now.
- # build model
- if 'model' not in self.cfg:
- self.model = create(cfg.architecture)
- else:
- self.model = self.cfg.model
- self.is_loaded_weights = True
- if cfg.architecture == 'YOLOX':
- for k, m in self.model.named_sublayers():
- if isinstance(m, nn.BatchNorm2D):
- m._epsilon = 1e-3 # for amp(fp16)
- m._momentum = 0.97 # 0.03 in pytorch
- #normalize params for deploy
- if 'slim' in cfg and cfg['slim_type'] == 'OFA':
- self.model.model.load_meanstd(cfg['TestReader'][
- 'sample_transforms'])
- elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
- self.model.student_model.load_meanstd(cfg['TestReader'][
- 'sample_transforms'])
- elif 'slim' in cfg and cfg[
- 'slim_type'] == 'DistillPrune' and self.mode == 'train':
- self.model.student_model.load_meanstd(cfg['TestReader'][
- 'sample_transforms'])
- else:
- self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
- # EvalDataset build with BatchSampler to evaluate in single device
- # TODO: multi-device evaluate
- if self.mode == 'eval':
- if cfg.architecture == 'FairMOT':
- self.loader = create('EvalMOTReader')(self.dataset, 0)
- elif cfg.architecture == "METRO_Body":
- reader_name = '{}Reader'.format(self.mode.capitalize())
- self.loader = create(reader_name)(self.dataset, cfg.worker_num)
- else:
- self._eval_batch_sampler = paddle.io.BatchSampler(
- self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
- reader_name = '{}Reader'.format(self.mode.capitalize())
- # If metric is VOC, need to be set collate_batch=False.
- if cfg.metric == 'VOC':
- cfg[reader_name]['collate_batch'] = False
- self.loader = create(reader_name)(self.dataset, cfg.worker_num,
- self._eval_batch_sampler)
- # TestDataset build after user set images, skip loader creation here
- # get Params
- print_params = self.cfg.get('print_params', False)
- if print_params:
- params = sum([
- p.numel() for n, p in self.model.named_parameters()
- if all([x not in n for x in ['_mean', '_variance', 'aux_']])
- ]) # exclude BatchNorm running status
- logger.info('Model Params : {} M.'.format((params / 1e6).numpy()[
- 0]))
- # build optimizer in train mode
- if self.mode == 'train':
- steps_per_epoch = len(self.loader)
- if steps_per_epoch < 1:
- logger.warning(
- "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
- )
- self.lr = create('LearningRate')(steps_per_epoch)
- self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
- # Unstructured pruner is only enabled in the train mode.
- if self.cfg.get('unstructured_prune'):
- self.pruner = create('UnstructuredPruner')(self.model,
- steps_per_epoch)
- if self.use_amp and self.amp_level == 'O2':
- self.model, self.optimizer = paddle.amp.decorate(
- models=self.model,
- optimizers=self.optimizer,
- level=self.amp_level)
- self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
- if self.use_ema:
- ema_decay = self.cfg.get('ema_decay', 0.9998)
- ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
- cycle_epoch = self.cfg.get('cycle_epoch', -1)
- ema_black_list = self.cfg.get('ema_black_list', None)
- self.ema = ModelEMA(
- self.model,
- decay=ema_decay,
- ema_decay_type=ema_decay_type,
- cycle_epoch=cycle_epoch,
- ema_black_list=ema_black_list)
- self._nranks = dist.get_world_size()
- self._local_rank = dist.get_rank()
- self.status = {}
- self.start_epoch = 0
- self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
- # initial default callbacks
- self._init_callbacks()
- # initial default metrics
- self._init_metrics()
- self._reset_metrics()
- def _init_callbacks(self):
- if self.mode == 'train':
- self._callbacks = [LogPrinter(self), Checkpointer(self)]
- if self.cfg.get('use_vdl', False):
- self._callbacks.append(VisualDLWriter(self))
- if self.cfg.get('save_proposals', False):
- self._callbacks.append(SniperProposalsGenerator(self))
- if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
- self._callbacks.append(WandbCallback(self))
- self._compose_callback = ComposeCallback(self._callbacks)
- elif self.mode == 'eval':
- self._callbacks = [LogPrinter(self)]
- if self.cfg.metric == 'WiderFace':
- self._callbacks.append(WiferFaceEval(self))
- self._compose_callback = ComposeCallback(self._callbacks)
- elif self.mode == 'test' and self.cfg.get('use_vdl', False):
- self._callbacks = [VisualDLWriter(self)]
- self._compose_callback = ComposeCallback(self._callbacks)
- else:
- self._callbacks = []
- self._compose_callback = None
- def _init_metrics(self, validate=False):
- if self.mode == 'test' or (self.mode == 'train' and not validate):
- self._metrics = []
- return
- classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
- if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
- # TODO: bias should be unified
- bias = 1 if self.cfg.get('bias', False) else 0
- output_eval = self.cfg['output_eval'] \
- if 'output_eval' in self.cfg else None
- save_prediction_only = self.cfg.get('save_prediction_only', False)
- # pass clsid2catid info to metric instance to avoid multiple loading
- # annotation file
- clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
- if self.mode == 'eval' else None
- # when do validation in train, annotation file should be get from
- # EvalReader instead of self.dataset(which is TrainReader)
- if self.mode == 'train' and validate:
- eval_dataset = self.cfg['EvalDataset']
- eval_dataset.check_or_download_dataset()
- anno_file = eval_dataset.get_anno()
- dataset = eval_dataset
- else:
- dataset = self.dataset
- anno_file = dataset.get_anno()
- IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
- if self.cfg.metric == "COCO":
- self._metrics = [
- COCOMetric(
- anno_file=anno_file,
- clsid2catid=clsid2catid,
- classwise=classwise,
- output_eval=output_eval,
- bias=bias,
- IouType=IouType,
- save_prediction_only=save_prediction_only)
- ]
- elif self.cfg.metric == "SNIPERCOCO": # sniper
- self._metrics = [
- SNIPERCOCOMetric(
- anno_file=anno_file,
- dataset=dataset,
- clsid2catid=clsid2catid,
- classwise=classwise,
- output_eval=output_eval,
- bias=bias,
- IouType=IouType,
- save_prediction_only=save_prediction_only)
- ]
- elif self.cfg.metric == 'RBOX':
- # TODO: bias should be unified
- bias = self.cfg['bias'] if 'bias' in self.cfg else 0
- output_eval = self.cfg['output_eval'] \
- if 'output_eval' in self.cfg else None
- save_prediction_only = self.cfg.get('save_prediction_only', False)
- imid2path = self.cfg.get('imid2path', None)
- # when do validation in train, annotation file should be get from
- # EvalReader instead of self.dataset(which is TrainReader)
- anno_file = self.dataset.get_anno()
- if self.mode == 'train' and validate:
- eval_dataset = self.cfg['EvalDataset']
- eval_dataset.check_or_download_dataset()
- anno_file = eval_dataset.get_anno()
- self._metrics = [
- RBoxMetric(
- anno_file=anno_file,
- classwise=classwise,
- output_eval=output_eval,
- bias=bias,
- save_prediction_only=save_prediction_only,
- imid2path=imid2path)
- ]
- elif self.cfg.metric == 'VOC':
- output_eval = self.cfg['output_eval'] \
- if 'output_eval' in self.cfg else None
- save_prediction_only = self.cfg.get('save_prediction_only', False)
- self._metrics = [
- VOCMetric(
- label_list=self.dataset.get_label_list(),
- class_num=self.cfg.num_classes,
- map_type=self.cfg.map_type,
- classwise=classwise,
- output_eval=output_eval,
- save_prediction_only=save_prediction_only)
- ]
- elif self.cfg.metric == 'WiderFace':
- multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
- self._metrics = [
- WiderFaceMetric(
- image_dir=os.path.join(self.dataset.dataset_dir,
- self.dataset.image_dir),
- anno_file=self.dataset.get_anno(),
- multi_scale=multi_scale)
- ]
- elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
- eval_dataset = self.cfg['EvalDataset']
- eval_dataset.check_or_download_dataset()
- anno_file = eval_dataset.get_anno()
- save_prediction_only = self.cfg.get('save_prediction_only', False)
- self._metrics = [
- KeyPointTopDownCOCOEval(
- anno_file,
- len(eval_dataset),
- self.cfg.num_joints,
- self.cfg.save_dir,
- save_prediction_only=save_prediction_only)
- ]
- elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
- eval_dataset = self.cfg['EvalDataset']
- eval_dataset.check_or_download_dataset()
- anno_file = eval_dataset.get_anno()
- save_prediction_only = self.cfg.get('save_prediction_only', False)
- self._metrics = [
- KeyPointTopDownMPIIEval(
- anno_file,
- len(eval_dataset),
- self.cfg.num_joints,
- self.cfg.save_dir,
- save_prediction_only=save_prediction_only)
- ]
- elif self.cfg.metric == 'Pose3DEval':
- save_prediction_only = self.cfg.get('save_prediction_only', False)
- self._metrics = [
- Pose3DEval(
- self.cfg.save_dir,
- save_prediction_only=save_prediction_only)
- ]
- elif self.cfg.metric == 'MOTDet':
- self._metrics = [JDEDetMetric(), ]
- else:
- logger.warning("Metric not support for metric type {}".format(
- self.cfg.metric))
- self._metrics = []
- def _reset_metrics(self):
- for metric in self._metrics:
- metric.reset()
- def register_callbacks(self, callbacks):
- callbacks = [c for c in list(callbacks) if c is not None]
- for c in callbacks:
- assert isinstance(c, Callback), \
- "metrics shoule be instances of subclass of Metric"
- self._callbacks.extend(callbacks)
- self._compose_callback = ComposeCallback(self._callbacks)
- def register_metrics(self, metrics):
- metrics = [m for m in list(metrics) if m is not None]
- for m in metrics:
- assert isinstance(m, Metric), \
- "metrics shoule be instances of subclass of Metric"
- self._metrics.extend(metrics)
- def load_weights(self, weights):
- if self.is_loaded_weights:
- return
- self.start_epoch = 0
- load_pretrain_weight(self.model, weights)
- logger.debug("Load weights {} to start training".format(weights))
- def load_weights_sde(self, det_weights, reid_weights):
- if self.model.detector:
- load_weight(self.model.detector, det_weights)
- if self.model.reid:
- load_weight(self.model.reid, reid_weights)
- else:
- load_weight(self.model.reid, reid_weights)
- def resume_weights(self, weights):
- # support Distill resume weights
- if hasattr(self.model, 'student_model'):
- self.start_epoch = load_weight(self.model.student_model, weights,
- self.optimizer)
- else:
- self.start_epoch = load_weight(self.model, weights, self.optimizer,
- self.ema if self.use_ema else None)
- logger.debug("Resume weights of epoch {}".format(self.start_epoch))
- def train(self, validate=False):
- assert self.mode == 'train', "Model not in 'train' mode"
- Init_mark = False
- if validate:
- self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
- "EvalDataset")()
- model = self.model
- if self.cfg.get('to_static', False):
- model = apply_to_static(self.cfg, model)
- sync_bn = (
- getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
- (self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu) and
- self._nranks > 1)
- if sync_bn:
- model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
- # enabel auto mixed precision mode
- if self.use_amp:
- scaler = paddle.amp.GradScaler(
- enable=self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu,
- init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
- # get distributed model
- if self.cfg.get('fleet', False):
- model = fleet.distributed_model(model)
- self.optimizer = fleet.distributed_optimizer(self.optimizer)
- elif self._nranks > 1:
- find_unused_parameters = self.cfg[
- 'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
- model = paddle.DataParallel(
- model, find_unused_parameters=find_unused_parameters)
- self.status.update({
- 'epoch_id': self.start_epoch,
- 'step_id': 0,
- 'steps_per_epoch': len(self.loader)
- })
- self.status['batch_time'] = stats.SmoothedValue(
- self.cfg.log_iter, fmt='{avg:.4f}')
- self.status['data_time'] = stats.SmoothedValue(
- self.cfg.log_iter, fmt='{avg:.4f}')
- self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
- if self.cfg.get('print_flops', False):
- flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
- self.dataset, self.cfg.worker_num)
- self._flops(flops_loader)
- profiler_options = self.cfg.get('profiler_options', None)
- self._compose_callback.on_train_begin(self.status)
- use_fused_allreduce_gradients = self.cfg[
- 'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False
- for epoch_id in range(self.start_epoch, self.cfg.epoch):
- self.status['mode'] = 'train'
- self.status['epoch_id'] = epoch_id
- self._compose_callback.on_epoch_begin(self.status)
- self.loader.dataset.set_epoch(epoch_id)
- model.train()
- iter_tic = time.time()
- for step_id, data in enumerate(self.loader):
- self.status['data_time'].update(time.time() - iter_tic)
- self.status['step_id'] = step_id
- profiler.add_profiler_step(profiler_options)
- self._compose_callback.on_step_begin(self.status)
- data['epoch_id'] = epoch_id
- if self.use_amp:
- if isinstance(
- model, paddle.
- DataParallel) and use_fused_allreduce_gradients:
- with model.no_sync():
- with paddle.amp.auto_cast(
- enable=self.cfg.use_gpu or
- self.cfg.use_npu or self.cfg.use_mlu,
- custom_white_list=self.custom_white_list,
- custom_black_list=self.custom_black_list,
- level=self.amp_level):
- # model forward
- outputs = model(data)
- loss = outputs['loss']
- # model backward
- scaled_loss = scaler.scale(loss)
- scaled_loss.backward()
- fused_allreduce_gradients(
- list(model.parameters()), None)
- else:
- with paddle.amp.auto_cast(
- enable=self.cfg.use_gpu or self.cfg.use_npu or
- self.cfg.use_mlu,
- custom_white_list=self.custom_white_list,
- custom_black_list=self.custom_black_list,
- level=self.amp_level):
- # model forward
- outputs = model(data)
- loss = outputs['loss']
- # model backward
- scaled_loss = scaler.scale(loss)
- scaled_loss.backward()
- # in dygraph mode, optimizer.minimize is equal to optimizer.step
- scaler.minimize(self.optimizer, scaled_loss)
- else:
- if isinstance(
- model, paddle.
- DataParallel) and use_fused_allreduce_gradients:
- with model.no_sync():
- # model forward
- outputs = model(data)
- loss = outputs['loss']
- # model backward
- loss.backward()
- fused_allreduce_gradients(
- list(model.parameters()), None)
- else:
- # model forward
- outputs = model(data)
- loss = outputs['loss']
- # model backward
- loss.backward()
- self.optimizer.step()
- curr_lr = self.optimizer.get_lr()
- self.lr.step()
- if self.cfg.get('unstructured_prune'):
- self.pruner.step()
- self.optimizer.clear_grad()
- self.status['learning_rate'] = curr_lr
- if self._nranks < 2 or self._local_rank == 0:
- self.status['training_staus'].update(outputs)
- self.status['batch_time'].update(time.time() - iter_tic)
- self._compose_callback.on_step_end(self.status)
- if self.use_ema:
- self.ema.update()
- iter_tic = time.time()
- if self.cfg.get('unstructured_prune'):
- self.pruner.update_params()
- is_snapshot = (self._nranks < 2 or (self._local_rank == 0 or self.cfg.metric == "Pose3DEval")) \
- and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
- if is_snapshot and self.use_ema:
- # apply ema weight on model
- weight = copy.deepcopy(self.model.state_dict())
- self.model.set_dict(self.ema.apply())
- self.status['weight'] = weight
- self._compose_callback.on_epoch_end(self.status)
- if validate and is_snapshot:
- if not hasattr(self, '_eval_loader'):
- # build evaluation dataset and loader
- self._eval_dataset = self.cfg.EvalDataset
- self._eval_batch_sampler = \
- paddle.io.BatchSampler(
- self._eval_dataset,
- batch_size=self.cfg.EvalReader['batch_size'])
- # If metric is VOC, need to be set collate_batch=False.
- if self.cfg.metric == 'VOC':
- self.cfg['EvalReader']['collate_batch'] = False
- if self.cfg.metric == "Pose3DEval":
- self._eval_loader = create('EvalReader')(
- self._eval_dataset, self.cfg.worker_num)
- else:
- self._eval_loader = create('EvalReader')(
- self._eval_dataset,
- self.cfg.worker_num,
- batch_sampler=self._eval_batch_sampler)
- # if validation in training is enabled, metrics should be re-init
- # Init_mark makes sure this code will only execute once
- if validate and Init_mark == False:
- Init_mark = True
- self._init_metrics(validate=validate)
- self._reset_metrics()
- with paddle.no_grad():
- self.status['save_best_model'] = True
- self._eval_with_loader(self._eval_loader)
- if is_snapshot and self.use_ema:
- # reset original weight
- self.model.set_dict(weight)
- self.status.pop('weight')
- self._compose_callback.on_train_end(self.status)
- def _eval_with_loader(self, loader):
- sample_num = 0
- tic = time.time()
- self._compose_callback.on_epoch_begin(self.status)
- self.status['mode'] = 'eval'
- self.model.eval()
- if self.cfg.get('print_flops', False):
- flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
- self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
- self._flops(flops_loader)
- for step_id, data in enumerate(loader):
- self.status['step_id'] = step_id
- self._compose_callback.on_step_begin(self.status)
- # forward
- if self.use_amp:
- with paddle.amp.auto_cast(
- enable=self.cfg.use_gpu or self.cfg.use_npu or
- self.cfg.use_mlu,
- custom_white_list=self.custom_white_list,
- custom_black_list=self.custom_black_list,
- level=self.amp_level):
- outs = self.model(data)
- else:
- outs = self.model(data)
- # update metrics
- for metric in self._metrics:
- metric.update(data, outs)
- # multi-scale inputs: all inputs have same im_id
- if isinstance(data, typing.Sequence):
- sample_num += data[0]['im_id'].numpy().shape[0]
- else:
- sample_num += data['im_id'].numpy().shape[0]
- self._compose_callback.on_step_end(self.status)
- self.status['sample_num'] = sample_num
- self.status['cost_time'] = time.time() - tic
- # accumulate metric to log out
- for metric in self._metrics:
- metric.accumulate()
- metric.log()
- self._compose_callback.on_epoch_end(self.status)
- # reset metric states for metric may performed multiple times
- self._reset_metrics()
- def evaluate(self):
- # get distributed model
- if self.cfg.get('fleet', False):
- self.model = fleet.distributed_model(self.model)
- self.optimizer = fleet.distributed_optimizer(self.optimizer)
- elif self._nranks > 1:
- find_unused_parameters = self.cfg[
- 'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
- self.model = paddle.DataParallel(
- self.model, find_unused_parameters=find_unused_parameters)
- with paddle.no_grad():
- self._eval_with_loader(self.loader)
- def _eval_with_loader_slice(self,
- loader,
- slice_size=[640, 640],
- overlap_ratio=[0.25, 0.25],
- combine_method='nms',
- match_threshold=0.6,
- match_metric='iou'):
- sample_num = 0
- tic = time.time()
- self._compose_callback.on_epoch_begin(self.status)
- self.status['mode'] = 'eval'
- self.model.eval()
- if self.cfg.get('print_flops', False):
- flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
- self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
- self._flops(flops_loader)
- merged_bboxs = []
- for step_id, data in enumerate(loader):
- self.status['step_id'] = step_id
- self._compose_callback.on_step_begin(self.status)
- # forward
- if self.use_amp:
- with paddle.amp.auto_cast(
- enable=self.cfg.use_gpu or self.cfg.use_npu or
- self.cfg.use_mlu,
- custom_white_list=self.custom_white_list,
- custom_black_list=self.custom_black_list,
- level=self.amp_level):
- outs = self.model(data)
- else:
- outs = self.model(data)
- shift_amount = data['st_pix']
- outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
- outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
- merged_bboxs.append(outs['bbox'])
- if data['is_last'] > 0:
- # merge matching predictions
- merged_results = {'bbox': []}
- if combine_method == 'nms':
- final_boxes = multiclass_nms(
- np.concatenate(merged_bboxs), self.cfg.num_classes,
- match_threshold, match_metric)
- merged_results['bbox'] = np.concatenate(final_boxes)
- elif combine_method == 'concat':
- merged_results['bbox'] = np.concatenate(merged_bboxs)
- else:
- raise ValueError(
- "Now only support 'nms' or 'concat' to fuse detection results."
- )
- merged_results['im_id'] = np.array([[0]])
- merged_results['bbox_num'] = np.array(
- [len(merged_results['bbox'])])
- merged_bboxs = []
- data['im_id'] = data['ori_im_id']
- # update metrics
- for metric in self._metrics:
- metric.update(data, merged_results)
- # multi-scale inputs: all inputs have same im_id
- if isinstance(data, typing.Sequence):
- sample_num += data[0]['im_id'].numpy().shape[0]
- else:
- sample_num += data['im_id'].numpy().shape[0]
- self._compose_callback.on_step_end(self.status)
- self.status['sample_num'] = sample_num
- self.status['cost_time'] = time.time() - tic
- # accumulate metric to log out
- for metric in self._metrics:
- metric.accumulate()
- metric.log()
- self._compose_callback.on_epoch_end(self.status)
- # reset metric states for metric may performed multiple times
- self._reset_metrics()
- def evaluate_slice(self,
- slice_size=[640, 640],
- overlap_ratio=[0.25, 0.25],
- combine_method='nms',
- match_threshold=0.6,
- match_metric='iou'):
- with paddle.no_grad():
- self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
- combine_method, match_threshold,
- match_metric)
- def slice_predict(self,
- images,
- slice_size=[640, 640],
- overlap_ratio=[0.25, 0.25],
- combine_method='nms',
- match_threshold=0.6,
- match_metric='iou',
- draw_threshold=0.5,
- output_dir='output',
- save_results=False,
- visualize=True):
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- self.dataset.set_slice_images(images, slice_size, overlap_ratio)
- loader = create('TestReader')(self.dataset, 0)
- imid2path = self.dataset.get_imid2path()
- def setup_metrics_for_loader():
- # mem
- metrics = copy.deepcopy(self._metrics)
- mode = self.mode
- save_prediction_only = self.cfg[
- 'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
- output_eval = self.cfg[
- 'output_eval'] if 'output_eval' in self.cfg else None
- # modify
- self.mode = '_test'
- self.cfg['save_prediction_only'] = True
- self.cfg['output_eval'] = output_dir
- self.cfg['imid2path'] = imid2path
- self._init_metrics()
- # restore
- self.mode = mode
- self.cfg.pop('save_prediction_only')
- if save_prediction_only is not None:
- self.cfg['save_prediction_only'] = save_prediction_only
- self.cfg.pop('output_eval')
- if output_eval is not None:
- self.cfg['output_eval'] = output_eval
- self.cfg.pop('imid2path')
- _metrics = copy.deepcopy(self._metrics)
- self._metrics = metrics
- return _metrics
- if save_results:
- metrics = setup_metrics_for_loader()
- else:
- metrics = []
- anno_file = self.dataset.get_anno()
- clsid2catid, catid2name = get_categories(
- self.cfg.metric, anno_file=anno_file)
- # Run Infer
- self.status['mode'] = 'test'
- self.model.eval()
- if self.cfg.get('print_flops', False):
- flops_loader = create('TestReader')(self.dataset, 0)
- self._flops(flops_loader)
- results = [] # all images
- merged_bboxs = [] # single image
- for step_id, data in enumerate(tqdm(loader)):
- self.status['step_id'] = step_id
- # forward
- outs = self.model(data)
- outs['bbox'] = outs['bbox'].numpy() # only in test mode
- shift_amount = data['st_pix']
- outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
- outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
- merged_bboxs.append(outs['bbox'])
- if data['is_last'] > 0:
- # merge matching predictions
- merged_results = {'bbox': []}
- if combine_method == 'nms':
- final_boxes = multiclass_nms(
- np.concatenate(merged_bboxs), self.cfg.num_classes,
- match_threshold, match_metric)
- merged_results['bbox'] = np.concatenate(final_boxes)
- elif combine_method == 'concat':
- merged_results['bbox'] = np.concatenate(merged_bboxs)
- else:
- raise ValueError(
- "Now only support 'nms' or 'concat' to fuse detection results."
- )
- merged_results['im_id'] = np.array([[0]])
- merged_results['bbox_num'] = np.array(
- [len(merged_results['bbox'])])
- merged_bboxs = []
- data['im_id'] = data['ori_im_id']
- for _m in metrics:
- _m.update(data, merged_results)
- for key in ['im_shape', 'scale_factor', 'im_id']:
- if isinstance(data, typing.Sequence):
- merged_results[key] = data[0][key]
- else:
- merged_results[key] = data[key]
- for key, value in merged_results.items():
- if hasattr(value, 'numpy'):
- merged_results[key] = value.numpy()
- results.append(merged_results)
- for _m in metrics:
- _m.accumulate()
- _m.reset()
- if visualize:
- for outs in results:
- batch_res = get_infer_results(outs, clsid2catid)
- bbox_num = outs['bbox_num']
- start = 0
- for i, im_id in enumerate(outs['im_id']):
- image_path = imid2path[int(im_id)]
- image = Image.open(image_path).convert('RGB')
- image = ImageOps.exif_transpose(image)
- self.status['original_image'] = np.array(image.copy())
- end = start + bbox_num[i]
- bbox_res = batch_res['bbox'][start:end] \
- if 'bbox' in batch_res else None
- mask_res = batch_res['mask'][start:end] \
- if 'mask' in batch_res else None
- segm_res = batch_res['segm'][start:end] \
- if 'segm' in batch_res else None
- keypoint_res = batch_res['keypoint'][start:end] \
- if 'keypoint' in batch_res else None
- pose3d_res = batch_res['pose3d'][start:end] \
- if 'pose3d' in batch_res else None
- image = visualize_results(
- image, bbox_res, mask_res, segm_res, keypoint_res,
- pose3d_res, int(im_id), catid2name, draw_threshold)
- self.status['result_image'] = np.array(image.copy())
- if self._compose_callback:
- self._compose_callback.on_step_end(self.status)
- # save image with detection
- save_name = self._get_save_image_name(output_dir,
- image_path)
- logger.info("Detection bbox results save in {}".format(
- save_name))
- image.save(save_name, quality=95)
- start = end
- def predict(self,
- images,
- draw_threshold=0.5,
- output_dir='output',
- save_results=False,
- visualize=True):
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- self.dataset.set_images(images)
- loader = create('TestReader')(self.dataset, 0)
- imid2path = self.dataset.get_imid2path()
- def setup_metrics_for_loader():
- # mem
- metrics = copy.deepcopy(self._metrics)
- mode = self.mode
- save_prediction_only = self.cfg[
- 'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
- output_eval = self.cfg[
- 'output_eval'] if 'output_eval' in self.cfg else None
- # modify
- self.mode = '_test'
- self.cfg['save_prediction_only'] = True
- self.cfg['output_eval'] = output_dir
- self.cfg['imid2path'] = imid2path
- self._init_metrics()
- # restore
- self.mode = mode
- self.cfg.pop('save_prediction_only')
- if save_prediction_only is not None:
- self.cfg['save_prediction_only'] = save_prediction_only
- self.cfg.pop('output_eval')
- if output_eval is not None:
- self.cfg['output_eval'] = output_eval
- self.cfg.pop('imid2path')
- _metrics = copy.deepcopy(self._metrics)
- self._metrics = metrics
- return _metrics
- if save_results:
- metrics = setup_metrics_for_loader()
- else:
- metrics = []
- anno_file = self.dataset.get_anno()
- clsid2catid, catid2name = get_categories(
- self.cfg.metric, anno_file=anno_file)
- # Run Infer
- self.status['mode'] = 'test'
- self.model.eval()
- if self.cfg.get('print_flops', False):
- flops_loader = create('TestReader')(self.dataset, 0)
- self._flops(flops_loader)
- results = []
- for step_id, data in enumerate(tqdm(loader)):
- self.status['step_id'] = step_id
- # forward
- outs = self.model(data)
- for _m in metrics:
- _m.update(data, outs)
- for key in ['im_shape', 'scale_factor', 'im_id']:
- if isinstance(data, typing.Sequence):
- outs[key] = data[0][key]
- else:
- outs[key] = data[key]
- for key, value in outs.items():
- if hasattr(value, 'numpy'):
- outs[key] = value.numpy()
- results.append(outs)
- # sniper
- if type(self.dataset) == SniperCOCODataSet:
- results = self.dataset.anno_cropper.aggregate_chips_detections(
- results)
- for _m in metrics:
- _m.accumulate()
- _m.reset()
- if visualize:
- for outs in results:
- batch_res = get_infer_results(outs, clsid2catid)
- bbox_num = outs['bbox_num']
- start = 0
- for i, im_id in enumerate(outs['im_id']):
- image_path = imid2path[int(im_id)]
- image = Image.open(image_path).convert('RGB')
- image = ImageOps.exif_transpose(image)
- self.status['original_image'] = np.array(image.copy())
- end = start + bbox_num[i]
- bbox_res = batch_res['bbox'][start:end] \
- if 'bbox' in batch_res else None
- mask_res = batch_res['mask'][start:end] \
- if 'mask' in batch_res else None
- segm_res = batch_res['segm'][start:end] \
- if 'segm' in batch_res else None
- keypoint_res = batch_res['keypoint'][start:end] \
- if 'keypoint' in batch_res else None
- pose3d_res = batch_res['pose3d'][start:end] \
- if 'pose3d' in batch_res else None
- image = visualize_results(
- image, bbox_res, mask_res, segm_res, keypoint_res,
- pose3d_res, int(im_id), catid2name, draw_threshold)
- self.status['result_image'] = np.array(image.copy())
- if self._compose_callback:
- self._compose_callback.on_step_end(self.status)
- # save image with detection
- save_name = self._get_save_image_name(output_dir,
- image_path)
- logger.info("Detection bbox results save in {}".format(
- save_name))
- image.save(save_name, quality=95)
- start = end
- def _get_save_image_name(self, output_dir, image_path):
- """
- Get save image name from source image path.
- """
- image_name = os.path.split(image_path)[-1]
- name, ext = os.path.splitext(image_name)
- return os.path.join(output_dir, "{}".format(name)) + ext
- def _get_infer_cfg_and_input_spec(self,
- save_dir,
- prune_input=True,
- kl_quant=False):
- image_shape = None
- im_shape = [None, 2]
- scale_factor = [None, 2]
- if self.cfg.architecture in MOT_ARCH:
- test_reader_name = 'TestMOTReader'
- else:
- test_reader_name = 'TestReader'
- if 'inputs_def' in self.cfg[test_reader_name]:
- inputs_def = self.cfg[test_reader_name]['inputs_def']
- image_shape = inputs_def.get('image_shape', None)
- # set image_shape=[None, 3, -1, -1] as default
- if image_shape is None:
- image_shape = [None, 3, -1, -1]
- if len(image_shape) == 3:
- image_shape = [None] + image_shape
- else:
- im_shape = [image_shape[0], 2]
- scale_factor = [image_shape[0], 2]
- if hasattr(self.model, 'deploy'):
- self.model.deploy = True
- if 'slim' not in self.cfg:
- for layer in self.model.sublayers():
- if hasattr(layer, 'convert_to_deploy'):
- layer.convert_to_deploy()
- if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
- 'export'] and self.cfg['export']['fuse_conv_bn']:
- self.model = fuse_conv_bn(self.model)
- export_post_process = self.cfg['export'].get(
- 'post_process', False) if hasattr(self.cfg, 'export') else True
- export_nms = self.cfg['export'].get('nms', False) if hasattr(
- self.cfg, 'export') else True
- export_benchmark = self.cfg['export'].get(
- 'benchmark', False) if hasattr(self.cfg, 'export') else False
- if hasattr(self.model, 'fuse_norm'):
- self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
- False)
- if hasattr(self.model, 'export_post_process'):
- self.model.export_post_process = export_post_process if not export_benchmark else False
- if hasattr(self.model, 'export_nms'):
- self.model.export_nms = export_nms if not export_benchmark else False
- if export_post_process and not export_benchmark:
- image_shape = [None] + image_shape[1:]
- # Save infer cfg
- _dump_infer_config(self.cfg,
- os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
- self.model)
- input_spec = [{
- "image": InputSpec(
- shape=image_shape, name='image'),
- "im_shape": InputSpec(
- shape=im_shape, name='im_shape'),
- "scale_factor": InputSpec(
- shape=scale_factor, name='scale_factor')
- }]
- if self.cfg.architecture == 'DeepSORT':
- input_spec[0].update({
- "crops": InputSpec(
- shape=[None, 3, 192, 64], name='crops')
- })
- if prune_input:
- static_model = paddle.jit.to_static(
- self.model, input_spec=input_spec)
- # NOTE: dy2st do not pruned program, but jit.save will prune program
- # input spec, prune input spec here and save with pruned input spec
- pruned_input_spec = _prune_input_spec(
- input_spec, static_model.forward.main_program,
- static_model.forward.outputs)
- else:
- static_model = None
- pruned_input_spec = input_spec
- # TODO: Hard code, delete it when support prune input_spec.
- if self.cfg.architecture == 'PicoDet' and not export_post_process:
- pruned_input_spec = [{
- "image": InputSpec(
- shape=image_shape, name='image')
- }]
- if kl_quant:
- if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
- pruned_input_spec = [{
- "image": InputSpec(
- shape=image_shape, name='image'),
- "scale_factor": InputSpec(
- shape=scale_factor, name='scale_factor')
- }]
- elif 'tinypose' in self.cfg.weights:
- pruned_input_spec = [{
- "image": InputSpec(
- shape=image_shape, name='image')
- }]
- return static_model, pruned_input_spec
- def export(self, output_dir='output_inference'):
- if hasattr(self.model, 'aux_neck'):
- self.model.__delattr__('aux_neck')
- if hasattr(self.model, 'aux_head'):
- self.model.__delattr__('aux_head')
- self.model.eval()
- model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
- save_dir = os.path.join(output_dir, model_name)
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
- save_dir)
- # dy2st and save model
- if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
- paddle.jit.save(
- static_model,
- os.path.join(save_dir, 'model'),
- input_spec=pruned_input_spec)
- else:
- self.cfg.slim.save_quantized_model(
- self.model,
- os.path.join(save_dir, 'model'),
- input_spec=pruned_input_spec)
- logger.info("Export model and saved in {}".format(save_dir))
- def post_quant(self, output_dir='output_inference'):
- model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
- save_dir = os.path.join(output_dir, model_name)
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- for idx, data in enumerate(self.loader):
- self.model(data)
- if idx == int(self.cfg.get('quant_batch_num', 10)):
- break
- # TODO: support prune input_spec
- kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
- _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
- save_dir, prune_input=False, kl_quant=kl_quant)
- self.cfg.slim.save_quantized_model(
- self.model,
- os.path.join(save_dir, 'model'),
- input_spec=pruned_input_spec)
- logger.info("Export Post-Quant model and saved in {}".format(save_dir))
- def _flops(self, loader):
- if hasattr(self.model, 'aux_neck'):
- self.model.__delattr__('aux_neck')
- if hasattr(self.model, 'aux_head'):
- self.model.__delattr__('aux_head')
- self.model.eval()
- try:
- import paddleslim
- except Exception as e:
- logger.warning(
- 'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
- )
- return
- from paddleslim.analysis import dygraph_flops as flops
- input_data = None
- for data in loader:
- input_data = data
- break
- input_spec = [{
- "image": input_data['image'][0].unsqueeze(0),
- "im_shape": input_data['im_shape'][0].unsqueeze(0),
- "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
- }]
- flops = flops(self.model, input_spec) / (1000**3)
- logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
- flops, input_data['image'][0].unsqueeze(0).shape))
- def parse_mot_images(self, cfg):
- import glob
- # for quant
- dataset_dir = cfg['EvalMOTDataset'].dataset_dir
- data_root = cfg['EvalMOTDataset'].data_root
- data_root = '{}/{}'.format(dataset_dir, data_root)
- seqs = os.listdir(data_root)
- seqs.sort()
- all_images = []
- for seq in seqs:
- infer_dir = os.path.join(data_root, seq)
- assert infer_dir is None or os.path.isdir(infer_dir), \
- "{} is not a directory".format(infer_dir)
- images = set()
- exts = ['jpg', 'jpeg', 'png', 'bmp']
- exts += [ext.upper() for ext in exts]
- for ext in exts:
- images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
- images = list(images)
- images.sort()
- assert len(images) > 0, "no image found in {}".format(infer_dir)
- all_images.extend(images)
- logger.info("Found {} inference images in total.".format(
- len(images)))
- return all_images
|