123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import copy
- import numpy as np
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- from paddle.io import Dataset
- from ppdet.core.workspace import register, serializable
- from ppdet.utils.download import get_dataset_path
- from ppdet.data import source
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- @serializable
- class DetDataset(Dataset):
- """
- Load detection dataset.
- Args:
- dataset_dir (str): root directory for dataset.
- image_dir (str): directory for images.
- anno_path (str): annotation file path.
- data_fields (list): key name of data dictionary, at least have 'image'.
- sample_num (int): number of samples to load, -1 means all.
- use_default_label (bool): whether to load default label list.
- repeat (int): repeat times for dataset, use in benchmark.
- """
- def __init__(self,
- dataset_dir=None,
- image_dir=None,
- anno_path=None,
- data_fields=['image'],
- sample_num=-1,
- use_default_label=None,
- repeat=1,
- **kwargs):
- super(DetDataset, self).__init__()
- self.dataset_dir = dataset_dir if dataset_dir is not None else ''
- self.anno_path = anno_path
- self.image_dir = image_dir if image_dir is not None else ''
- self.data_fields = data_fields
- self.sample_num = sample_num
- self.use_default_label = use_default_label
- self.repeat = repeat
- self._epoch = 0
- self._curr_iter = 0
- def __len__(self, ):
- return len(self.roidbs) * self.repeat
- def __call__(self, *args, **kwargs):
- return self
- def __getitem__(self, idx):
- n = len(self.roidbs)
- if self.repeat > 1:
- idx %= n
- # data batch
- roidb = copy.deepcopy(self.roidbs[idx])
- if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
- idx = np.random.randint(n)
- roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
- elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
- idx = np.random.randint(n)
- roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
- elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
- roidb = [roidb, ] + [
- copy.deepcopy(self.roidbs[np.random.randint(n)])
- for _ in range(4)
- ]
- elif self.pre_img_epoch == 0 or self._epoch < self.pre_img_epoch:
- # Add previous image as input, only used in CenterTrack
- idx_pre_img = idx - 1
- if idx_pre_img < 0:
- idx_pre_img = idx + 1
- roidb = [roidb, ] + [copy.deepcopy(self.roidbs[idx_pre_img])]
- if isinstance(roidb, Sequence):
- for r in roidb:
- r['curr_iter'] = self._curr_iter
- else:
- roidb['curr_iter'] = self._curr_iter
- self._curr_iter += 1
- return self.transform(roidb)
- def check_or_download_dataset(self):
- self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path,
- self.image_dir)
- def set_kwargs(self, **kwargs):
- self.mixup_epoch = kwargs.get('mixup_epoch', -1)
- self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
- self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)
- self.pre_img_epoch = kwargs.get('pre_img_epoch', -1)
- def set_transform(self, transform):
- self.transform = transform
- def set_epoch(self, epoch_id):
- self._epoch = epoch_id
- def parse_dataset(self, ):
- raise NotImplementedError(
- "Need to implement parse_dataset method of Dataset")
- def get_anno(self):
- if self.anno_path is None:
- return
- return os.path.join(self.dataset_dir, self.anno_path)
- def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
- return f.lower().endswith(extensions)
- def _make_dataset(dir):
- dir = os.path.expanduser(dir)
- if not os.path.isdir(dir):
- raise ('{} should be a dir'.format(dir))
- images = []
- for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
- for fname in sorted(fnames):
- path = os.path.join(root, fname)
- if _is_valid_file(path):
- images.append(path)
- return images
- @register
- @serializable
- class ImageFolder(DetDataset):
- def __init__(self,
- dataset_dir=None,
- image_dir=None,
- anno_path=None,
- sample_num=-1,
- use_default_label=None,
- **kwargs):
- super(ImageFolder, self).__init__(
- dataset_dir,
- image_dir,
- anno_path,
- sample_num=sample_num,
- use_default_label=use_default_label)
- self._imid2path = {}
- self.roidbs = None
- self.sample_num = sample_num
- def check_or_download_dataset(self):
- return
- def get_anno(self):
- if self.anno_path is None:
- return
- if self.dataset_dir:
- return os.path.join(self.dataset_dir, self.anno_path)
- else:
- return self.anno_path
- def parse_dataset(self, ):
- if not self.roidbs:
- self.roidbs = self._load_images()
- def _parse(self):
- image_dir = self.image_dir
- if not isinstance(image_dir, Sequence):
- image_dir = [image_dir]
- images = []
- for im_dir in image_dir:
- if os.path.isdir(im_dir):
- im_dir = os.path.join(self.dataset_dir, im_dir)
- images.extend(_make_dataset(im_dir))
- elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
- images.append(im_dir)
- return images
- def _load_images(self):
- images = self._parse()
- ct = 0
- records = []
- for image in images:
- assert image != '' and os.path.isfile(image), \
- "Image {} not found".format(image)
- if self.sample_num > 0 and ct >= self.sample_num:
- break
- rec = {'im_id': np.array([ct]), 'im_file': image}
- self._imid2path[ct] = image
- ct += 1
- records.append(rec)
- assert len(records) > 0, "No image file found"
- return records
- def get_imid2path(self):
- return self._imid2path
- def set_images(self, images):
- self.image_dir = images
- self.roidbs = self._load_images()
- def set_slice_images(self,
- images,
- slice_size=[640, 640],
- overlap_ratio=[0.25, 0.25]):
- self.image_dir = images
- ori_records = self._load_images()
- try:
- import sahi
- from sahi.slicing import slice_image
- except Exception as e:
- logger.error(
- 'sahi not found, plaese install sahi. '
- 'for example: `pip install sahi`, see https://github.com/obss/sahi.'
- )
- raise e
- sub_img_ids = 0
- ct = 0
- ct_sub = 0
- records = []
- for i, ori_rec in enumerate(ori_records):
- im_path = ori_rec['im_file']
- slice_image_result = sahi.slicing.slice_image(
- image=im_path,
- slice_height=slice_size[0],
- slice_width=slice_size[1],
- overlap_height_ratio=overlap_ratio[0],
- overlap_width_ratio=overlap_ratio[1])
- sub_img_num = len(slice_image_result)
- for _ind in range(sub_img_num):
- im = slice_image_result.images[_ind]
- rec = {
- 'image': im,
- 'im_id': np.array([sub_img_ids + _ind]),
- 'h': im.shape[0],
- 'w': im.shape[1],
- 'ori_im_id': np.array([ori_rec['im_id'][0]]),
- 'st_pix': np.array(
- slice_image_result.starting_pixels[_ind],
- dtype=np.float32),
- 'is_last': 1 if _ind == sub_img_num - 1 else 0,
- } if 'image' in self.data_fields else {}
- records.append(rec)
- ct_sub += sub_img_num
- ct += 1
- logger.info('{} samples and slice to {} sub_samples.'.format(ct,
- ct_sub))
- self.roidbs = records
- def get_label_list(self):
- # Only VOC dataset needs label list in ImageFold
- return self.anno_path
- @register
- class CommonDataset(object):
- def __init__(self, **dataset_args):
- super(CommonDataset, self).__init__()
- dataset_args = copy.deepcopy(dataset_args)
- type = dataset_args.pop("name")
- self.dataset = getattr(source, type)(**dataset_args)
- def __call__(self):
- return self.dataset
- @register
- class TrainDataset(CommonDataset):
- pass
- @register
- class EvalMOTDataset(CommonDataset):
- pass
- @register
- class TestMOTDataset(CommonDataset):
- pass
- @register
- class EvalDataset(CommonDataset):
- pass
- @register
- class TestDataset(CommonDataset):
- pass
|