Download a suitable version and install.
Run this command in cmd. (Every time before using OpenVINO)
Name |
Value |
INTEL_OPENVINO_DIR |
\openvino_2021
|
INTEL_CVSDK_DIR |
%INTEL_OPENVINO_DIR% |
InferenceEngine_DIR |
%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\share |
HDDL_INSTALL_DIR |
%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\external\hddl |
ngraph_DIR |
%INTEL_OPENVINO_DIR%\deployment_tools\ngraph\cmake |
And add this to Path
%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\bin\intel64\Debug;%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\bin\intel64\Release;%HDDL_INSTALL_DIR%\bin;%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\external\tbb\bin;%INTEL_OPENVINO_DIR%\deployment_tools\ngraph\lib
Linux
Run this command in shell. (Every time before using OpenVINO)
source /opt/intel/openvino_2021/bin/setupvars.sh
Or edit .bashrc
vi ~/.bashrc
Add this line to the end of the file
source /opt/intel/openvino_2021/bin/setupvars.sh
Convert model
1. Conver to onnx
Create picodet_m_416_coco.onnx and tinypose256.onnx
example:
```shell
modelName=picodet_m_416_coco
# export model
python tools/export_model.py \
-c configs/picodet/${modelName}.yml \
-o weights=${modelName}.pdparams \
--output_dir=inference_model
# convert to onnx
paddle2onnx --model_dir inference_model/${modelName} \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--opset_version 11 \
--save_file ${modelName}.onnx
# onnxsim
python -m onnxsim ${modelName}.onnx ${modelName}_sim.onnx
```
2.Convert to OpenVINO
cd <INSTSLL_DIR>/openvino_2021/deployment_tools/model_optimizer
Install requirements for convert tool
cd ./install_prerequisites
sudo install_prerequisites_onnx.sh
Then convert model. Notice: mean_values and scale_values should be the same with your training settings in YAML config file.
mo_onnx.py --input_model <ONNX_MODEL> --mean_values [103.53,116.28,123.675] --scale_values [57.375,57.12,58.395] --input_shape [1,3,256,192]
Note: The new version of openvino convert tools may cause error in Resize op. If you has problem with this, please try the version: openvino_2021.4.689
Build
Windows
<OPENVINO_INSTSLL_DIR>\openvino_2021\bin\setupvars.bat
mkdir -p build
cd build
cmake ..
msbuild tinypose_demo.vcxproj /p:configuration=release /p:platform=x64
Linux
source /opt/intel/openvino_2021/bin/setupvars.sh
mkdir build
cd build
cmake ..
make
Run demo
Download PicoDet openvino model PicoDet openvino model download link.
Download TinyPose openvino model TinyPose openvino model download link, the origin paddlepaddle model is Tinypose256.
move picodet and tinypose openvino model files to the demo's weight folder.
Note:
- The model output node name may update by new version of paddle\paddle2onnx\onnxsim\openvino, please checkout your own model output node when the code can't find "conv2d_441.tmp_1"\"argmax_0.tmp_0".
- If you happened with this error "Cannot find blob with name: transpose_1.tmp_0", it means your picodet model is oldversion. you can modify the below code to fix it.
#picodet_openvino.h line 50-54
std::vector<HeadInfo> heads_info_{
// cls_pred|dis_pred|stride
{"transpose_0.tmp_0", "transpose_1.tmp_0", 8},
{"transpose_2.tmp_0", "transpose_3.tmp_0", 16},
{"transpose_4.tmp_0", "transpose_5.tmp_0", 32},
{"transpose_6.tmp_0", "transpose_7.tmp_0", 64},
};
modify to:
std::vector<HeadInfo> heads_info_{
// cls_pred|dis_pred|stride
{"save_infer_model/scale_0.tmp_1", "save_infer_model/scale_4.tmp_1", 8},
{"save_infer_model/scale_1.tmp_1", "save_infer_model/scale_5.tmp_1", 16},
{"save_infer_model/scale_2.tmp_1", "save_infer_model/scale_6.tmp_1", 32},
{"save_infer_model/scale_3.tmp_1", "save_infer_model/scale_7.tmp_1", 64},
};
- you can view your onnx model with Netron.
Edit file
step1:
main.cpp
#define image_size 416
...
cv::Mat image(256, 192, CV_8UC3, cv::Scalar(1, 1, 1));
std::vector<float> center = {128, 96};
std::vector<float> scale = {256, 192};
...
auto detector = PicoDet("../weight/picodet_m_416.xml");
auto kpts_detector = new KeyPointDetector("../weight/tinypose256.xml", -1, 256, 192);
...
step2:
picodet_openvino.h
#define image_size 416
Run
Run command:
./tinypose_demo [mode] [image_file]
param |
detail |
--mode |
input mode,0:camera;1:image;2:video;3:benchmark |
--image_file |
input image path |
Webcam
tinypose_demo 0 0
Inference images
tinypose_demo 1 IMAGE_FOLDER/*.jpg
Inference video
tinypose_demo 2 VIDEO_PATH
Benchmark
tinypose_demo 3 0
Plateform: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz x 24(核)
Model: Tinypose256_Openvino
param |
Min |
Max |
Avg |
infer time(s) |
0.018 |
0.062 |
0.028 |