123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "keypoint_postprocess.h"
- #define PI 3.1415926535
- #define HALF_CIRCLE_DEGREE 180
- cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) {
- cv::Point2f direct{a.x - b.x, a.y - b.y};
- return cv::Point2f(a.x - direct.y, a.y + direct.x);
- }
- std::vector<float> get_dir(float src_point_x,
- float src_point_y,
- float rot_rad) {
- float sn = sin(rot_rad);
- float cs = cos(rot_rad);
- std::vector<float> src_result{0.0, 0.0};
- src_result[0] = src_point_x * cs - src_point_y * sn;
- src_result[1] = src_point_x * sn + src_point_y * cs;
- return src_result;
- }
- void affine_tranform(
- float pt_x, float pt_y, cv::Mat& trans, std::vector<float>& preds, int p) {
- double new1[3] = {pt_x, pt_y, 1.0};
- cv::Mat new_pt(3, 1, trans.type(), new1);
- cv::Mat w = trans * new_pt;
- preds[p * 3 + 1] = static_cast<float>(w.at<double>(0, 0));
- preds[p * 3 + 2] = static_cast<float>(w.at<double>(1, 0));
- }
- void get_affine_transform(std::vector<float>& center,
- std::vector<float>& scale,
- float rot,
- std::vector<int>& output_size,
- cv::Mat& trans,
- int inv) {
- float src_w = scale[0];
- float dst_w = static_cast<float>(output_size[0]);
- float dst_h = static_cast<float>(output_size[1]);
- float rot_rad = rot * PI / HALF_CIRCLE_DEGREE;
- std::vector<float> src_dir = get_dir(-0.5 * src_w, 0, rot_rad);
- std::vector<float> dst_dir{static_cast<float>(-0.5) * dst_w, 0.0};
- cv::Point2f srcPoint2f[3], dstPoint2f[3];
- srcPoint2f[0] = cv::Point2f(center[0], center[1]);
- srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]);
- srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]);
- dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
- dstPoint2f[1] =
- cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
- dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]);
- if (inv == 0) {
- trans = cv::getAffineTransform(srcPoint2f, dstPoint2f);
- } else {
- trans = cv::getAffineTransform(dstPoint2f, srcPoint2f);
- }
- }
- void transform_preds(std::vector<float>& coords,
- std::vector<float>& center,
- std::vector<float>& scale,
- std::vector<int>& output_size,
- std::vector<uint64_t>& dim,
- std::vector<float>& target_coords,
- bool affine=false) {
- if (affine) {
- cv::Mat trans(2, 3, CV_64FC1);
- get_affine_transform(center, scale, 0, output_size, trans, 1);
- for (int p = 0; p < dim[1]; ++p) {
- affine_tranform(
- coords[p * 2], coords[p * 2 + 1], trans, target_coords, p);
- }
- } else {
- float heat_w = static_cast<float>(output_size[0]);
- float heat_h = static_cast<float>(output_size[1]);
- float x_scale = scale[0] / heat_w;
- float y_scale = scale[1] / heat_h;
- float offset_x = center[0] - scale[0] / 2.;
- float offset_y = center[1] - scale[1] / 2.;
- for (int i = 0; i < dim[1]; i++) {
- target_coords[i * 3 + 1] = x_scale * coords[i * 2] + offset_x;
- target_coords[i * 3 + 2] = y_scale * coords[i * 2 + 1] + offset_y;
- }
- }
- }
- // only for batchsize == 1
- void get_max_preds(std::vector<float>& heatmap,
- std::vector<int>& dim,
- std::vector<float>& preds,
- std::vector<float>& maxvals,
- int batchid,
- int joint_idx) {
- int num_joints = dim[1];
- int width = dim[3];
- std::vector<int> idx;
- idx.resize(num_joints * 2);
- for (int j = 0; j < dim[1]; j++) {
- float* index = &(
- heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]);
- float* end = index + dim[2] * dim[3];
- float* max_dis = std::max_element(index, end);
- auto max_id = std::distance(index, max_dis);
- maxvals[j] = *max_dis;
- if (*max_dis > 0) {
- preds[j * 2] = static_cast<float>(max_id % width);
- preds[j * 2 + 1] = static_cast<float>(max_id / width);
- }
- }
- }
- void dark_parse(std::vector<float>& heatmap,
- std::vector<uint64_t>& dim,
- std::vector<float>& coords,
- int px,
- int py,
- int index,
- int ch) {
- /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
- Representation for Human Pose Estimation (CVPR 2020).
- 1) offset = - hassian.inv() * derivative
- 2) dx = (heatmap[x+1] - heatmap[x-1])/2.
- 3) dxx = (dx[x+1] - dx[x-1])/2.
- 4) derivative = Mat([dx, dy])
- 5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
- */
- std::vector<float>::const_iterator first1 = heatmap.begin() + index;
- std::vector<float>::const_iterator last1 =
- heatmap.begin() + index + dim[2] * dim[3];
- std::vector<float> heatmap_ch(first1, last1);
- cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0, dim[2]);
- heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
- cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
- heatmap_mat = heatmap_mat.reshape(1, 1);
- heatmap_ch = std::vector<float>(heatmap_mat.reshape(1, 1));
- float epsilon = 1e-10;
- // sample heatmap to get values in around target location
- float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
- float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
- float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));
- float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
- float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
- float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
- float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
- float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
- float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
- float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
- float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
- float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
- float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));
- // compute dx/dy and dxx/dyy with sampled values
- float dx = 0.5 * (xr - xl);
- float dy = 0.5 * (yu - yd);
- float dxx = 0.25 * (xr2 - 2 * xy + xl2);
- float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
- float dyy = 0.25 * (yu2 - 2 * xy + yd2);
- // finally get offset by derivative and hassian, which combined by dx/dy and
- // dxx/dyy
- if (dxx * dyy - dxy * dxy != 0) {
- float M[2][2] = {dxx, dxy, dxy, dyy};
- float D[2] = {dx, dy};
- cv::Mat hassian(2, 2, CV_32F, M);
- cv::Mat derivative(2, 1, CV_32F, D);
- cv::Mat offset = -hassian.inv() * derivative;
- coords[ch * 2] += offset.at<float>(0, 0);
- coords[ch * 2 + 1] += offset.at<float>(1, 0);
- }
- }
- void get_final_preds(std::vector<float>& heatmap,
- std::vector<uint64_t>& dim,
- std::vector<float>& idxout,
- std::vector<uint64_t>& idxdim,
- std::vector<float>& center,
- std::vector<float> scale,
- std::vector<float>& preds,
- int batchid,
- bool DARK) {
- std::vector<float> coords;
- coords.resize(dim[1] * 2);
- int heatmap_height = dim[2];
- int heatmap_width = dim[3];
- for (int j = 0; j < dim[1]; ++j) {
- int index = (batchid * dim[1] + j) * dim[2] * dim[3];
- int idx = int(idxout[batchid * dim[1] + j]);
- preds[j * 3] = heatmap[index + idx];
- coords[j * 2] = idx % heatmap_width;
- coords[j * 2 + 1] = idx / heatmap_width;
- int px = int(coords[j * 2] + 0.5);
- int py = int(coords[j * 2 + 1] + 0.5);
- if (DARK && px > 1 && px < heatmap_width - 2 && py > 1 &&
- py < heatmap_height - 2) {
- dark_parse(heatmap, dim, coords, px, py, index, j);
- } else {
- if (px > 0 && px < heatmap_width - 1) {
- float diff_x = heatmap[index + py * dim[3] + px + 1] -
- heatmap[index + py * dim[3] + px - 1];
- coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25;
- }
- if (py > 0 && py < heatmap_height - 1) {
- float diff_y = heatmap[index + (py + 1) * dim[3] + px] -
- heatmap[index + (py - 1) * dim[3] + px];
- coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25;
- }
- }
- }
- std::vector<int> img_size{heatmap_width, heatmap_height};
- transform_preds(coords, center, scale, img_size, dim, preds);
- }
- void CropImg(cv::Mat& img,
- cv::Mat& crop_img,
- std::vector<int>& area,
- std::vector<float>& center,
- std::vector<float>& scale,
- float expandratio) {
- int crop_x1 = std::max(0, area[0]);
- int crop_y1 = std::max(0, area[1]);
- int crop_x2 = std::min(img.cols - 1, area[2]);
- int crop_y2 = std::min(img.rows - 1, area[3]);
- int center_x = (crop_x1 + crop_x2) / 2.;
- int center_y = (crop_y1 + crop_y2) / 2.;
- int half_h = (crop_y2 - crop_y1) / 2.;
- int half_w = (crop_x2 - crop_x1) / 2.;
- if (half_h * 3 > half_w * 4) {
- half_w = static_cast<int>(half_h * 0.75);
- } else {
- half_h = static_cast<int>(half_w * 4 / 3);
- }
- crop_x1 =
- std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
- crop_y1 =
- std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
- crop_x2 = std::min(img.cols - 1,
- static_cast<int>(center_x + half_w * (1 + expandratio)));
- crop_y2 = std::min(img.rows - 1,
- static_cast<int>(center_y + half_h * (1 + expandratio)));
- crop_img =
- img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));
- center.clear();
- center.emplace_back((crop_x1 + crop_x2) / 2);
- center.emplace_back((crop_y1 + crop_y2) / 2);
- scale.clear();
- scale.emplace_back((crop_x2 - crop_x1));
- scale.emplace_back((crop_y2 - crop_y1));
- }
|