123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import cv2
- import numpy as np
- import argparse
- import onnxruntime as ort
- from pathlib import Path
- from tqdm import tqdm
- class PicoDet():
- def __init__(self,
- model_pb_path,
- label_path,
- prob_threshold=0.4,
- iou_threshold=0.3):
- self.classes = list(
- map(lambda x: x.strip(), open(label_path, 'r').readlines()))
- self.num_classes = len(self.classes)
- self.prob_threshold = prob_threshold
- self.iou_threshold = iou_threshold
- self.mean = np.array(
- [103.53, 116.28, 123.675], dtype=np.float32).reshape(1, 1, 3)
- self.std = np.array(
- [57.375, 57.12, 58.395], dtype=np.float32).reshape(1, 1, 3)
- so = ort.SessionOptions()
- so.log_severity_level = 3
- self.net = ort.InferenceSession(model_pb_path, so)
- inputs_name = [a.name for a in self.net.get_inputs()]
- inputs_shape = {
- k: v.shape
- for k, v in zip(inputs_name, self.net.get_inputs())
- }
- self.input_shape = inputs_shape['image'][2:]
- def _normalize(self, img):
- img = img.astype(np.float32)
- img = (img / 255.0 - self.mean / 255.0) / (self.std / 255.0)
- return img
- def resize_image(self, srcimg, keep_ratio=False):
- top, left, newh, neww = 0, 0, self.input_shape[0], self.input_shape[1]
- origin_shape = srcimg.shape[:2]
- im_scale_y = newh / float(origin_shape[0])
- im_scale_x = neww / float(origin_shape[1])
- img_shape = np.array([
- [float(self.input_shape[0]), float(self.input_shape[1])]
- ]).astype('float32')
- scale_factor = np.array([[im_scale_y, im_scale_x]]).astype('float32')
- if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
- hw_scale = srcimg.shape[0] / srcimg.shape[1]
- if hw_scale > 1:
- newh, neww = self.input_shape[0], int(self.input_shape[1] /
- hw_scale)
- img = cv2.resize(
- srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
- left = int((self.input_shape[1] - neww) * 0.5)
- img = cv2.copyMakeBorder(
- img,
- 0,
- 0,
- left,
- self.input_shape[1] - neww - left,
- cv2.BORDER_CONSTANT,
- value=0) # add border
- else:
- newh, neww = int(self.input_shape[0] *
- hw_scale), self.input_shape[1]
- img = cv2.resize(
- srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
- top = int((self.input_shape[0] - newh) * 0.5)
- img = cv2.copyMakeBorder(
- img,
- top,
- self.input_shape[0] - newh - top,
- 0,
- 0,
- cv2.BORDER_CONSTANT,
- value=0)
- else:
- img = cv2.resize(
- srcimg, self.input_shape, interpolation=cv2.INTER_LINEAR)
- return img, img_shape, scale_factor
- def get_color_map_list(self, num_classes):
- color_map = num_classes * [0, 0, 0]
- for i in range(0, num_classes):
- j = 0
- lab = i
- while lab:
- color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
- color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
- color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
- j += 1
- lab >>= 3
- color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
- return color_map
- def detect(self, srcimg):
- img, im_shape, scale_factor = self.resize_image(srcimg)
- img = self._normalize(img)
- blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
- inputs_dict = {
- 'im_shape': im_shape,
- 'image': blob,
- 'scale_factor': scale_factor
- }
- inputs_name = [a.name for a in self.net.get_inputs()]
- net_inputs = {k: inputs_dict[k] for k in inputs_name}
- outs = self.net.run(None, net_inputs)
- outs = np.array(outs[0])
- expect_boxes = (outs[:, 1] > 0.5) & (outs[:, 0] > -1)
- np_boxes = outs[expect_boxes, :]
- color_list = self.get_color_map_list(self.num_classes)
- clsid2color = {}
- for i in range(np_boxes.shape[0]):
- classid, conf = int(np_boxes[i, 0]), np_boxes[i, 1]
- xmin, ymin, xmax, ymax = int(np_boxes[i, 2]), int(np_boxes[
- i, 3]), int(np_boxes[i, 4]), int(np_boxes[i, 5])
- if classid not in clsid2color:
- clsid2color[classid] = color_list[classid]
- color = tuple(clsid2color[classid])
- cv2.rectangle(
- srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2)
- print(self.classes[classid] + ': ' + str(round(conf, 3)))
- cv2.putText(
- srcimg,
- self.classes[classid] + ':' + str(round(conf, 3)), (xmin,
- ymin - 10),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.8, (0, 255, 0),
- thickness=2)
- return srcimg
- def detect_folder(self, img_fold, result_path):
- img_fold = Path(img_fold)
- result_path = Path(result_path)
- result_path.mkdir(parents=True, exist_ok=True)
- img_name_list = filter(
- lambda x: str(x).endswith(".png") or str(x).endswith(".jpg"),
- img_fold.iterdir(), )
- img_name_list = list(img_name_list)
- print(f"find {len(img_name_list)} images")
- for img_path in tqdm(img_name_list):
- img = cv2.imread(str(img_path), 1)
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- srcimg = net.detect(img)
- save_path = str(result_path / img_path.name.replace(".png", ".jpg"))
- cv2.imwrite(save_path, srcimg)
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--modelpath',
- type=str,
- default='onnx_file/picodet_s_320_lcnet_postprocessed.onnx',
- help="onnx filepath")
- parser.add_argument(
- '--classfile',
- type=str,
- default='coco_label.txt',
- help="classname filepath")
- parser.add_argument(
- '--confThreshold', default=0.5, type=float, help='class confidence')
- parser.add_argument(
- '--nmsThreshold', default=0.6, type=float, help='nms iou thresh')
- parser.add_argument(
- "--img_fold", dest="img_fold", type=str, default="./imgs")
- parser.add_argument(
- "--result_fold", dest="result_fold", type=str, default="results")
- args = parser.parse_args()
- net = PicoDet(
- args.modelpath,
- args.classfile,
- prob_threshold=args.confThreshold,
- iou_threshold=args.nmsThreshold)
- net.detect_folder(args.img_fold, args.result_fold)
- print(
- f'infer results in ./deploy/third_engine/demo_onnxruntime/{args.result_fold}'
- )
|