123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import division
- import os
- import cv2
- import numpy as np
- from PIL import Image, ImageDraw, ImageFile
- ImageFile.LOAD_TRUNCATED_IMAGES = True
- import math
- def visualize_box_mask(im, results, labels, threshold=0.5):
- """
- Args:
- im (str/np.ndarray): path of image/np.ndarray read by cv2
- results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- MaskRCNN's results include 'masks': np.ndarray:
- shape:[N, im_h, im_w]
- labels (list): labels:['class1', ..., 'classn']
- threshold (float): Threshold of score.
- Returns:
- im (PIL.Image.Image): visualized image
- """
- if isinstance(im, str):
- im = Image.open(im).convert('RGB')
- elif isinstance(im, np.ndarray):
- im = Image.fromarray(im)
- if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0:
- im = draw_mask(
- im, results['boxes'], results['masks'], labels, threshold=threshold)
- if 'boxes' in results and len(results['boxes']) > 0:
- im = draw_box(im, results['boxes'], labels, threshold=threshold)
- if 'segm' in results:
- im = draw_segm(
- im,
- results['segm'],
- results['label'],
- results['score'],
- labels,
- threshold=threshold)
- return im
- def get_color_map_list(num_classes):
- """
- Args:
- num_classes (int): number of class
- Returns:
- color_map (list): RGB color list
- """
- color_map = num_classes * [0, 0, 0]
- for i in range(0, num_classes):
- j = 0
- lab = i
- while lab:
- color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
- color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
- color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
- j += 1
- lab >>= 3
- color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
- return color_map
- def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
- """
- Args:
- im (PIL.Image.Image): PIL image
- np_boxes (np.ndarray): shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- np_masks (np.ndarray): shape:[N, im_h, im_w]
- labels (list): labels:['class1', ..., 'classn']
- threshold (float): threshold of mask
- Returns:
- im (PIL.Image.Image): visualized image
- """
- color_list = get_color_map_list(len(labels))
- w_ratio = 0.4
- alpha = 0.7
- im = np.array(im).astype('float32')
- clsid2color = {}
- expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
- np_boxes = np_boxes[expect_boxes, :]
- np_masks = np_masks[expect_boxes, :, :]
- im_h, im_w = im.shape[:2]
- np_masks = np_masks[:, :im_h, :im_w]
- for i in range(len(np_masks)):
- clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
- mask = np_masks[i]
- if clsid not in clsid2color:
- clsid2color[clsid] = color_list[clsid]
- color_mask = clsid2color[clsid]
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- color_mask = np.array(color_mask)
- im[idx[0], idx[1], :] *= 1.0 - alpha
- im[idx[0], idx[1], :] += alpha * color_mask
- return Image.fromarray(im.astype('uint8'))
- def draw_box(im, np_boxes, labels, threshold=0.5):
- """
- Args:
- im (PIL.Image.Image): PIL image
- np_boxes (np.ndarray): shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- labels (list): labels:['class1', ..., 'classn']
- threshold (float): threshold of box
- Returns:
- im (PIL.Image.Image): visualized image
- """
- draw_thickness = min(im.size) // 320
- draw = ImageDraw.Draw(im)
- clsid2color = {}
- color_list = get_color_map_list(len(labels))
- expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
- np_boxes = np_boxes[expect_boxes, :]
- for dt in np_boxes:
- clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
- if clsid not in clsid2color:
- clsid2color[clsid] = color_list[clsid]
- color = tuple(clsid2color[clsid])
- if len(bbox) == 4:
- xmin, ymin, xmax, ymax = bbox
- print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
- 'right_bottom:[{:.2f},{:.2f}]'.format(
- int(clsid), score, xmin, ymin, xmax, ymax))
- # draw bbox
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=draw_thickness,
- fill=color)
- elif len(bbox) == 8:
- x1, y1, x2, y2, x3, y3, x4, y4 = bbox
- draw.line(
- [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
- width=2,
- fill=color)
- xmin = min(x1, x2, x3, x4)
- ymin = min(y1, y2, y3, y4)
- # draw label
- text = "{} {:.4f}".format(labels[clsid], score)
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
- return im
- def draw_segm(im,
- np_segms,
- np_label,
- np_score,
- labels,
- threshold=0.5,
- alpha=0.7):
- """
- Draw segmentation on image
- """
- mask_color_id = 0
- w_ratio = .4
- color_list = get_color_map_list(len(labels))
- im = np.array(im).astype('float32')
- clsid2color = {}
- np_segms = np_segms.astype(np.uint8)
- for i in range(np_segms.shape[0]):
- mask, score, clsid = np_segms[i], np_score[i], np_label[i]
- if score < threshold:
- continue
- if clsid not in clsid2color:
- clsid2color[clsid] = color_list[clsid]
- color_mask = clsid2color[clsid]
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- color_mask = np.array(color_mask)
- idx0 = np.minimum(idx[0], im.shape[0] - 1)
- idx1 = np.minimum(idx[1], im.shape[1] - 1)
- im[idx0, idx1, :] *= 1.0 - alpha
- im[idx0, idx1, :] += alpha * color_mask
- sum_x = np.sum(mask, axis=0)
- x = np.where(sum_x > 0.5)[0]
- sum_y = np.sum(mask, axis=1)
- y = np.where(sum_y > 0.5)[0]
- x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
- cv2.rectangle(im, (x0, y0), (x1, y1),
- tuple(color_mask.astype('int32').tolist()), 1)
- bbox_text = '%s %.2f' % (labels[clsid], score)
- t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
- cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
- tuple(color_mask.astype('int32').tolist()), -1)
- cv2.putText(
- im,
- bbox_text, (x0, y0 - 2),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.3, (0, 0, 0),
- 1,
- lineType=cv2.LINE_AA)
- return Image.fromarray(im.astype('uint8'))
- def get_color(idx):
- idx = idx * 3
- color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
- return color
- def visualize_pose(imgfile,
- results,
- visual_thresh=0.6,
- save_name='pose.jpg',
- save_dir='output',
- returnimg=False,
- ids=None):
- try:
- import matplotlib.pyplot as plt
- import matplotlib
- plt.switch_backend('agg')
- except Exception as e:
- print('Matplotlib not found, please install matplotlib.'
- 'for example: `pip install matplotlib`.')
- raise e
- skeletons, scores = results['keypoint']
- skeletons = np.array(skeletons)
- kpt_nums = 17
- if len(skeletons) > 0:
- kpt_nums = skeletons.shape[1]
- if kpt_nums == 17: #plot coco keypoint
- EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
- (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
- (13, 15), (14, 16), (11, 12)]
- else: #plot mpii keypoint
- EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
- (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
- (8, 13)]
- NUM_EDGES = len(EDGES)
- colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
- [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
- [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
- cmap = matplotlib.cm.get_cmap('hsv')
- plt.figure()
- img = cv2.imread(imgfile) if type(imgfile) == str else imgfile
- color_set = results['colors'] if 'colors' in results else None
- if 'bbox' in results and ids is None:
- bboxs = results['bbox']
- for j, rect in enumerate(bboxs):
- xmin, ymin, xmax, ymax = rect
- color = colors[0] if color_set is None else colors[color_set[j] %
- len(colors)]
- cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
- canvas = img.copy()
- for i in range(kpt_nums):
- for j in range(len(skeletons)):
- if skeletons[j][i, 2] < visual_thresh:
- continue
- if ids is None:
- color = colors[i] if color_set is None else colors[color_set[j]
- %
- len(colors)]
- else:
- color = get_color(ids[j])
- cv2.circle(
- canvas,
- tuple(skeletons[j][i, 0:2].astype('int32')),
- 2,
- color,
- thickness=-1)
- to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
- fig = matplotlib.pyplot.gcf()
- stickwidth = 2
- for i in range(NUM_EDGES):
- for j in range(len(skeletons)):
- edge = EDGES[i]
- if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[
- 1], 2] < visual_thresh:
- continue
- cur_canvas = canvas.copy()
- X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
- Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
- mX = np.mean(X)
- mY = np.mean(Y)
- length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
- angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
- polygon = cv2.ellipse2Poly((int(mY), int(mX)),
- (int(length / 2), stickwidth),
- int(angle), 0, 360, 1)
- if ids is None:
- color = colors[i] if color_set is None else colors[color_set[j]
- %
- len(colors)]
- else:
- color = get_color(ids[j])
- cv2.fillConvexPoly(cur_canvas, polygon, color)
- canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
- if returnimg:
- return canvas
- save_name = os.path.join(
- save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg')
- plt.imsave(save_name, canvas[:, :, ::-1])
- print("keypoint visualize image saved to: " + save_name)
- plt.close()
- def visualize_attr(im, results, boxes=None, is_mtmct=False):
- if isinstance(im, str):
- im = Image.open(im)
- im = np.ascontiguousarray(np.copy(im))
- im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
- else:
- im = np.ascontiguousarray(np.copy(im))
- im_h, im_w = im.shape[:2]
- text_scale = max(0.5, im.shape[0] / 3000.)
- text_thickness = 1
- line_inter = im.shape[0] / 40.
- for i, res in enumerate(results):
- if boxes is None:
- text_w = 3
- text_h = 1
- elif is_mtmct:
- box = boxes[i] # multi camera, bbox shape is x,y, w,h
- text_w = int(box[0]) + 3
- text_h = int(box[1])
- else:
- box = boxes[i] # single camera, bbox shape is 0, 0, x,y, w,h
- text_w = int(box[2]) + 3
- text_h = int(box[3])
- for text in res:
- text_h += int(line_inter)
- text_loc = (text_w, text_h)
- cv2.putText(
- im,
- text,
- text_loc,
- cv2.FONT_ITALIC,
- text_scale, (0, 255, 255),
- thickness=text_thickness)
- return im
- def visualize_action(im,
- mot_boxes,
- action_visual_collector=None,
- action_text="",
- video_action_score=None,
- video_action_text=""):
- im = cv2.imread(im) if isinstance(im, str) else im
- im_h, im_w = im.shape[:2]
- text_scale = max(1, im.shape[1] / 400.)
- text_thickness = 2
- if action_visual_collector:
- id_action_dict = {}
- for collector, action_type in zip(action_visual_collector, action_text):
- id_detected = collector.get_visualize_ids()
- for pid in id_detected:
- id_action_dict[pid] = id_action_dict.get(pid, [])
- id_action_dict[pid].append(action_type)
- for mot_box in mot_boxes:
- # mot_box is a format with [mot_id, class, score, xmin, ymin, w, h]
- if mot_box[0] in id_action_dict:
- text_position = (int(mot_box[3] + mot_box[5] * 0.75),
- int(mot_box[4] - 10))
- display_text = ', '.join(id_action_dict[mot_box[0]])
- cv2.putText(im, display_text, text_position,
- cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), 2)
- if video_action_score:
- cv2.putText(
- im,
- video_action_text + ': %.2f' % video_action_score,
- (int(im_w / 2), int(15 * text_scale) + 5),
- cv2.FONT_ITALIC,
- text_scale, (0, 0, 255),
- thickness=text_thickness)
- return im
- def visualize_vehicleplate(im, results, boxes=None):
- if isinstance(im, str):
- im = Image.open(im)
- im = np.ascontiguousarray(np.copy(im))
- im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
- else:
- im = np.ascontiguousarray(np.copy(im))
- im_h, im_w = im.shape[:2]
- text_scale = max(1.0, im.shape[0] / 400.)
- text_thickness = 2
- line_inter = im.shape[0] / 40.
- for i, res in enumerate(results):
- if boxes is None:
- text_w = 3
- text_h = 1
- else:
- box = boxes[i]
- text = res
- if text == "":
- continue
- text_w = int(box[2])
- text_h = int(box[5] + box[3])
- text_loc = (text_w, text_h)
- cv2.putText(
- im,
- "LP: " + text,
- text_loc,
- cv2.FONT_ITALIC,
- text_scale, (0, 255, 255),
- thickness=text_thickness)
- return im
- def draw_press_box_lanes(im, np_boxes, labels, threshold=0.5):
- """
- Args:
- im (PIL.Image.Image): PIL image
- np_boxes (np.ndarray): shape:[N,6], N: number of box,
- matix element:[class, score, x_min, y_min, x_max, y_max]
- labels (list): labels:['class1', ..., 'classn']
- threshold (float): threshold of box
- Returns:
- im (PIL.Image.Image): visualized image
- """
- if isinstance(im, str):
- im = Image.open(im).convert('RGB')
- elif isinstance(im, np.ndarray):
- im = Image.fromarray(im)
- draw_thickness = min(im.size) // 320
- draw = ImageDraw.Draw(im)
- clsid2color = {}
- color_list = get_color_map_list(len(labels))
- if np_boxes.shape[1] == 7:
- np_boxes = np_boxes[:, 1:]
- expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
- np_boxes = np_boxes[expect_boxes, :]
- for dt in np_boxes:
- clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
- if clsid not in clsid2color:
- clsid2color[clsid] = color_list[clsid]
- color = tuple(clsid2color[clsid])
- if len(bbox) == 4:
- xmin, ymin, xmax, ymax = bbox
- # draw bbox
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=draw_thickness,
- fill=(0, 0, 255))
- elif len(bbox) == 8:
- x1, y1, x2, y2, x3, y3, x4, y4 = bbox
- draw.line(
- [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
- width=2,
- fill=color)
- xmin = min(x1, x2, x3, x4)
- ymin = min(y1, y2, y3, y4)
- # draw label
- text = "{}".format(labels[clsid])
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmin + 1, ymax - th), (xmin + tw + 1, ymax)], fill=color)
- draw.text((xmin + 1, ymax - th), text, fill=(0, 0, 255))
- return im
- def visualize_vehiclepress(im, results, threshold=0.5):
- results = np.array(results)
- labels = ['violation']
- im = draw_press_box_lanes(im, results, labels, threshold=threshold)
- return im
- def visualize_lane(im, lanes):
- if isinstance(im, str):
- im = Image.open(im).convert('RGB')
- elif isinstance(im, np.ndarray):
- im = Image.fromarray(im)
- draw_thickness = min(im.size) // 320
- draw = ImageDraw.Draw(im)
- if len(lanes) > 0:
- for lane in lanes:
- draw.line(
- [(lane[0], lane[1]), (lane[2], lane[3])],
- width=draw_thickness,
- fill=(0, 0, 255))
- return im
- def visualize_vehicle_retrograde(im, mot_res, vehicle_retrograde_res):
- if isinstance(im, str):
- im = Image.open(im).convert('RGB')
- elif isinstance(im, np.ndarray):
- im = Image.fromarray(im)
- draw_thickness = min(im.size) // 320
- draw = ImageDraw.Draw(im)
- lane = vehicle_retrograde_res['fence_line']
- if lane is not None:
- draw.line(
- [(lane[0], lane[1]), (lane[2], lane[3])],
- width=draw_thickness,
- fill=(0, 0, 0))
- mot_id = vehicle_retrograde_res['output']
- if mot_id is None or len(mot_id) == 0:
- return im
- if mot_res is None:
- return im
- np_boxes = mot_res['boxes']
- if np_boxes is not None:
- for dt in np_boxes:
- if dt[0] not in mot_id:
- continue
- bbox = dt[3:]
- if len(bbox) == 4:
- xmin, ymin, xmax, ymax = bbox
- # draw bbox
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=draw_thickness,
- fill=(0, 255, 0))
- # draw label
- text = "retrograde"
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmax + 1, ymin - th), (xmax + tw + 1, ymin)],
- fill=(0, 255, 0))
- draw.text((xmax + 1, ymin - th), text, fill=(0, 255, 0))
- return im
|