123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import time
- import os
- import ast
- import glob
- import yaml
- import copy
- import numpy as np
- import subprocess as sp
- from python.keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
- class Times(object):
- def __init__(self):
- self.time = 0.
- # start time
- self.st = 0.
- # end time
- self.et = 0.
- def start(self):
- self.st = time.time()
- def end(self, repeats=1, accumulative=True):
- self.et = time.time()
- if accumulative:
- self.time += (self.et - self.st) / repeats
- else:
- self.time = (self.et - self.st) / repeats
- def reset(self):
- self.time = 0.
- self.st = 0.
- self.et = 0.
- def value(self):
- return round(self.time, 4)
- class PipeTimer(Times):
- def __init__(self):
- super(PipeTimer, self).__init__()
- self.total_time = Times()
- self.module_time = {
- 'det': Times(),
- 'mot': Times(),
- 'attr': Times(),
- 'kpt': Times(),
- 'video_action': Times(),
- 'skeleton_action': Times(),
- 'reid': Times(),
- 'det_action': Times(),
- 'cls_action': Times(),
- 'vehicle_attr': Times(),
- 'vehicleplate': Times(),
- 'lanes': Times(),
- 'vehicle_press': Times(),
- 'vehicle_retrograde': Times()
- }
- self.img_num = 0
- self.track_num = 0
- def get_total_time(self):
- total_time = self.total_time.value()
- total_time = round(total_time, 4)
- average_latency = total_time / max(1, self.img_num)
- qps = 0
- if total_time > 0:
- qps = 1 / average_latency
- return total_time, average_latency, qps
- def info(self):
- total_time, average_latency, qps = self.get_total_time()
- print("------------------ Inference Time Info ----------------------")
- print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
- self.img_num))
- for k, v in self.module_time.items():
- v_time = round(v.value(), 4)
- if v_time > 0 and k in ['det', 'mot', 'video_action']:
- print("{} time(ms): {}; per frame average time(ms): {}".format(
- k, v_time * 1000, v_time * 1000 / self.img_num))
- elif v_time > 0:
- print("{} time(ms): {}; per trackid average time(ms): {}".
- format(k, v_time * 1000, v_time * 1000 / self.track_num))
- print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
- average_latency * 1000, qps))
- return qps
- def report(self, average=False):
- dic = {}
- dic['total'] = round(self.total_time.value() / max(1, self.img_num),
- 4) if average else self.total_time.value()
- dic['det'] = round(self.module_time['det'].value() /
- max(1, self.img_num),
- 4) if average else self.module_time['det'].value()
- dic['mot'] = round(self.module_time['mot'].value() /
- max(1, self.img_num),
- 4) if average else self.module_time['mot'].value()
- dic['attr'] = round(self.module_time['attr'].value() /
- max(1, self.img_num),
- 4) if average else self.module_time['attr'].value()
- dic['kpt'] = round(self.module_time['kpt'].value() /
- max(1, self.img_num),
- 4) if average else self.module_time['kpt'].value()
- dic['video_action'] = self.module_time['video_action'].value()
- dic['skeleton_action'] = round(
- self.module_time['skeleton_action'].value() / max(1, self.img_num),
- 4) if average else self.module_time['skeleton_action'].value()
- dic['img_num'] = self.img_num
- return dic
- class PushStream(object):
- def __init__(self, pushurl="rtsp://127.0.0.1:8554/"):
- self.command = ""
- # 自行设置
- self.pushurl = pushurl
- def initcmd(self, fps, width, height):
- self.command = [
- 'ffmpeg', '-y', '-f', 'rawvideo', '-vcodec', 'rawvideo', '-pix_fmt',
- 'bgr24', '-s', "{}x{}".format(width, height), '-r', str(fps), '-i',
- '-', '-pix_fmt', 'yuv420p', '-f', 'rtsp', self.pushurl
- ]
- self.pipe = sp.Popen(self.command, stdin=sp.PIPE)
- def get_test_images(infer_dir, infer_img):
- """
- Get image path list in TEST mode
- """
- assert infer_img is not None or infer_dir is not None, \
- "--infer_img or --infer_dir should be set"
- assert infer_img is None or os.path.isfile(infer_img), \
- "{} is not a file".format(infer_img)
- assert infer_dir is None or os.path.isdir(infer_dir), \
- "{} is not a directory".format(infer_dir)
- # infer_img has a higher priority
- if infer_img and os.path.isfile(infer_img):
- return [infer_img]
- images = set()
- infer_dir = os.path.abspath(infer_dir)
- assert os.path.isdir(infer_dir), \
- "infer_dir {} is not a directory".format(infer_dir)
- exts = ['jpg', 'jpeg', 'png', 'bmp']
- exts += [ext.upper() for ext in exts]
- for ext in exts:
- images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
- images = list(images)
- assert len(images) > 0, "no image found in {}".format(infer_dir)
- print("Found {} inference images in total.".format(len(images)))
- return images
- def crop_image_with_det(batch_input, det_res, thresh=0.3):
- boxes = det_res['boxes']
- score = det_res['boxes'][:, 1]
- boxes_num = det_res['boxes_num']
- start_idx = 0
- crop_res = []
- for b_id, input in enumerate(batch_input):
- boxes_num_i = boxes_num[b_id]
- if boxes_num_i == 0:
- continue
- boxes_i = boxes[start_idx:start_idx + boxes_num_i, :]
- score_i = score[start_idx:start_idx + boxes_num_i]
- res = []
- for box, s in zip(boxes_i, score_i):
- if s > thresh:
- crop_image, new_box, ori_box = expand_crop(input, box)
- if crop_image is not None:
- res.append(crop_image)
- crop_res.append(res)
- return crop_res
- def normal_crop(image, rect):
- imgh, imgw, c = image.shape
- label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
- org_rect = [xmin, ymin, xmax, ymax]
- if label != 0:
- return None, None, None
- xmin = max(0, xmin)
- ymin = max(0, ymin)
- xmax = min(imgw, xmax)
- ymax = min(imgh, ymax)
- return image[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect
- def crop_image_with_mot(input, mot_res, expand=True):
- res = mot_res['boxes']
- crop_res = []
- new_bboxes = []
- ori_bboxes = []
- for box in res:
- if expand:
- crop_image, new_bbox, ori_bbox = expand_crop(input, box[1:])
- else:
- crop_image, new_bbox, ori_bbox = normal_crop(input, box[1:])
- if crop_image is not None:
- crop_res.append(crop_image)
- new_bboxes.append(new_bbox)
- ori_bboxes.append(ori_bbox)
- return crop_res, new_bboxes, ori_bboxes
- def parse_mot_res(input):
- mot_res = []
- boxes, scores, ids = input[0]
- for box, score, i in zip(boxes[0], scores[0], ids[0]):
- xmin, ymin, w, h = box
- res = [i, 0, score, xmin, ymin, xmin + w, ymin + h]
- mot_res.append(res)
- return {'boxes': np.array(mot_res)}
- def refine_keypoint_coordinary(kpts, bbox, coord_size):
- """
- This function is used to adjust coordinate values to a fixed scale.
- """
- tl = bbox[:, 0:2]
- wh = bbox[:, 2:] - tl
- tl = np.expand_dims(np.transpose(tl, (1, 0)), (2, 3))
- wh = np.expand_dims(np.transpose(wh, (1, 0)), (2, 3))
- target_w, target_h = coord_size
- res = (kpts - tl) / wh * np.expand_dims(
- np.array([[target_w], [target_h]]), (2, 3))
- return res
- def parse_mot_keypoint(input, coord_size):
- parsed_skeleton_with_mot = {}
- ids = []
- skeleton = []
- for tracker_id, kpt_seq in input:
- ids.append(tracker_id)
- kpts = np.array(kpt_seq.kpts, dtype=np.float32)[:, :, :2]
- kpts = np.expand_dims(np.transpose(kpts, [2, 0, 1]),
- -1) #T, K, C -> C, T, K, 1
- bbox = np.array(kpt_seq.bboxes, dtype=np.float32)
- skeleton.append(refine_keypoint_coordinary(kpts, bbox, coord_size))
- parsed_skeleton_with_mot["mot_id"] = ids
- parsed_skeleton_with_mot["skeleton"] = skeleton
- return parsed_skeleton_with_mot
|