123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import cv2
- def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
- """
- Args:
- box_scores (N, 5): boxes in corner-form and probabilities.
- iou_threshold: intersection over union threshold.
- top_k: keep top_k results. If k <= 0, keep all the results.
- candidate_size: only consider the candidates with the highest scores.
- Returns:
- picked: a list of indexes of the kept boxes
- """
- scores = box_scores[:, -1]
- boxes = box_scores[:, :-1]
- picked = []
- indexes = np.argsort(scores)
- indexes = indexes[-candidate_size:]
- while len(indexes) > 0:
- current = indexes[-1]
- picked.append(current)
- if 0 < top_k == len(picked) or len(indexes) == 1:
- break
- current_box = boxes[current, :]
- indexes = indexes[:-1]
- rest_boxes = boxes[indexes, :]
- iou = iou_of(
- rest_boxes,
- np.expand_dims(
- current_box, axis=0), )
- indexes = indexes[iou <= iou_threshold]
- return box_scores[picked, :]
- def iou_of(boxes0, boxes1, eps=1e-5):
- """Return intersection-over-union (Jaccard index) of boxes.
- Args:
- boxes0 (N, 4): ground truth boxes.
- boxes1 (N or 1, 4): predicted boxes.
- eps: a small number to avoid 0 as denominator.
- Returns:
- iou (N): IoU values.
- """
- overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
- overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
- overlap_area = area_of(overlap_left_top, overlap_right_bottom)
- area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
- area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
- return overlap_area / (area0 + area1 - overlap_area + eps)
- def area_of(left_top, right_bottom):
- """Compute the areas of rectangles given two corners.
- Args:
- left_top (N, 2): left top corner.
- right_bottom (N, 2): right bottom corner.
- Returns:
- area (N): return the area.
- """
- hw = np.clip(right_bottom - left_top, 0.0, None)
- return hw[..., 0] * hw[..., 1]
- class PPYOLOEPostProcess(object):
- """
- Args:
- input_shape (int): network input image size
- scale_factor (float): scale factor of ori image
- """
- def __init__(self,
- score_threshold=0.4,
- nms_threshold=0.5,
- nms_top_k=10000,
- keep_top_k=300):
- self.score_threshold = score_threshold
- self.nms_threshold = nms_threshold
- self.nms_top_k = nms_top_k
- self.keep_top_k = keep_top_k
- def _non_max_suppression(self, prediction, scale_factor):
- batch_size = prediction.shape[0]
- out_boxes_list = []
- box_num_list = []
- for batch_id in range(batch_size):
- bboxes, confidences = prediction[batch_id][..., :4], prediction[
- batch_id][..., 4:]
- # nms
- picked_box_probs = []
- picked_labels = []
- for class_index in range(0, confidences.shape[1]):
- probs = confidences[:, class_index]
- mask = probs > self.score_threshold
- probs = probs[mask]
- if probs.shape[0] == 0:
- continue
- subset_boxes = bboxes[mask, :]
- box_probs = np.concatenate(
- [subset_boxes, probs.reshape(-1, 1)], axis=1)
- box_probs = hard_nms(
- box_probs,
- iou_threshold=self.nms_threshold,
- top_k=self.nms_top_k)
- picked_box_probs.append(box_probs)
- picked_labels.extend([class_index] * box_probs.shape[0])
- if len(picked_box_probs) == 0:
- out_boxes_list.append(np.empty((0, 4)))
- else:
- picked_box_probs = np.concatenate(picked_box_probs)
- # resize output boxes
- picked_box_probs[:, 0] /= scale_factor[batch_id][1]
- picked_box_probs[:, 2] /= scale_factor[batch_id][1]
- picked_box_probs[:, 1] /= scale_factor[batch_id][0]
- picked_box_probs[:, 3] /= scale_factor[batch_id][0]
- # clas score box
- out_box = np.concatenate(
- [
- np.expand_dims(
- np.array(picked_labels), axis=-1), np.expand_dims(
- picked_box_probs[:, 4], axis=-1),
- picked_box_probs[:, :4]
- ],
- axis=1)
- if out_box.shape[0] > self.keep_top_k:
- out_box = out_box[out_box[:, 1].argsort()[::-1]
- [:self.keep_top_k]]
- out_boxes_list.append(out_box)
- box_num_list.append(out_box.shape[0])
- out_boxes_list = np.concatenate(out_boxes_list, axis=0)
- box_num_list = np.array(box_num_list)
- return out_boxes_list, box_num_list
- def __call__(self, outs, scale_factor):
- out_boxes_list, box_num_list = self._non_max_suppression(outs,
- scale_factor)
- return {'bbox': out_boxes_list, 'bbox_num': box_num_list}
|