123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- import numpy as np
- import argparse
- import paddle
- from ppdet.core.workspace import load_config, merge_config
- from ppdet.core.workspace import create
- from ppdet.metrics import COCOMetric, VOCMetric, KeyPointTopDownCOCOEval
- from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
- from post_process import PPYOLOEPostProcess
- def argsparser():
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument(
- '--config_path',
- type=str,
- default=None,
- help="path of compression strategy config.",
- required=True)
- parser.add_argument(
- '--devices',
- type=str,
- default='gpu',
- help="which device used to compress.")
- return parser
- def reader_wrapper(reader, input_list):
- def gen():
- for data in reader:
- in_dict = {}
- if isinstance(input_list, list):
- for input_name in input_list:
- in_dict[input_name] = data[input_name]
- elif isinstance(input_list, dict):
- for input_name in input_list.keys():
- in_dict[input_list[input_name]] = data[input_name]
- yield in_dict
- return gen
- def convert_numpy_data(data, metric):
- data_all = {}
- data_all = {k: np.array(v) for k, v in data.items()}
- if isinstance(metric, VOCMetric):
- for k, v in data_all.items():
- if not isinstance(v[0], np.ndarray):
- tmp_list = []
- for t in v:
- tmp_list.append(np.array(t))
- data_all[k] = np.array(tmp_list)
- else:
- data_all = {k: np.array(v) for k, v in data.items()}
- return data_all
- def eval():
- place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
- exe = paddle.static.Executor(place)
- val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
- global_config["model_dir"].rstrip('/'),
- exe,
- model_filename=global_config["model_filename"],
- params_filename=global_config["params_filename"])
- print('Loaded model from: {}'.format(global_config["model_dir"]))
- metric = global_config['metric']
- for batch_id, data in enumerate(val_loader):
- data_all = convert_numpy_data(data, metric)
- data_input = {}
- for k, v in data.items():
- if isinstance(global_config['input_list'], list):
- if k in global_config['input_list']:
- data_input[k] = np.array(v)
- elif isinstance(global_config['input_list'], dict):
- if k in global_config['input_list'].keys():
- data_input[global_config['input_list'][k]] = np.array(v)
- outs = exe.run(val_program,
- feed=data_input,
- fetch_list=fetch_targets,
- return_numpy=False)
- res = {}
- if 'arch' in global_config and global_config['arch'] == 'PPYOLOE':
- postprocess = PPYOLOEPostProcess(
- score_threshold=0.01, nms_threshold=0.6)
- res = postprocess(np.array(outs[0]), data_all['scale_factor'])
- else:
- for out in outs:
- v = np.array(out)
- if len(v.shape) > 1:
- res['bbox'] = v
- else:
- res['bbox_num'] = v
- metric.update(data_all, res)
- if batch_id % 100 == 0:
- print('Eval iter:', batch_id)
- metric.accumulate()
- metric.log()
- metric.reset()
- def main():
- global global_config
- all_config = load_slim_config(FLAGS.config_path)
- assert "Global" in all_config, "Key 'Global' not found in config file."
- global_config = all_config["Global"]
- reader_cfg = load_config(global_config['reader_config'])
- dataset = reader_cfg['EvalDataset']
- global val_loader
- val_loader = create('EvalReader')(reader_cfg['EvalDataset'],
- reader_cfg['worker_num'],
- return_list=True)
- metric = None
- if reader_cfg['metric'] == 'COCO':
- clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
- anno_file = dataset.get_anno()
- metric = COCOMetric(
- anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
- elif reader_cfg['metric'] == 'VOC':
- metric = VOCMetric(
- label_list=dataset.get_label_list(),
- class_num=reader_cfg['num_classes'],
- map_type=reader_cfg['map_type'])
- elif reader_cfg['metric'] == 'KeyPointTopDownCOCOEval':
- anno_file = dataset.get_anno()
- metric = KeyPointTopDownCOCOEval(anno_file,
- len(dataset), 17, 'output_eval')
- else:
- raise ValueError("metric currently only supports COCO and VOC.")
- global_config['metric'] = metric
- eval()
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
- paddle.set_device(FLAGS.devices)
- main()
|