yolox_cspdarknet.yml 980 B

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. architecture: YOLOX
  2. norm_type: sync_bn
  3. use_ema: True
  4. ema_decay: 0.9999
  5. ema_decay_type: "exponential"
  6. act: silu
  7. find_unused_parameters: True
  8. depth_mult: 1.0
  9. width_mult: 1.0
  10. YOLOX:
  11. backbone: CSPDarkNet
  12. neck: YOLOCSPPAN
  13. head: YOLOXHead
  14. size_stride: 32
  15. size_range: [15, 25] # multi-scale range [480*480 ~ 800*800]
  16. CSPDarkNet:
  17. arch: "X"
  18. return_idx: [2, 3, 4]
  19. depthwise: False
  20. YOLOCSPPAN:
  21. depthwise: False
  22. YOLOXHead:
  23. l1_epoch: 285
  24. depthwise: False
  25. loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0}
  26. assigner:
  27. name: SimOTAAssigner
  28. candidate_topk: 10
  29. use_vfl: False
  30. nms:
  31. name: MultiClassNMS
  32. nms_top_k: 10000
  33. keep_top_k: 1000
  34. score_threshold: 0.001
  35. nms_threshold: 0.65
  36. # For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%.
  37. # For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot.