yangjun dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
..
_base_ dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
application dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
README.md dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
README_cn.md dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
README_legacy.md dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_l_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_l_36e_coco_xpu.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_m_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_s_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_s_400e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_t_p2_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_crn_x_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_l_30e_voc.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_l_60e_objects365.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_l_80e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_m_60e_objects365.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_m_80e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_s_30e_voc.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_s_60e_objects365.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_s_80e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_t_auxhead_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_x_60e_objects365.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año
ppyoloe_plus_crn_x_80e_coco.yml dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 hace 1 año

README.md

English | 简体中文

PP-YOLOE

Latest News

  • Release PP-YOLOE+ model: (2022.08)
    • Pre training model using large-scale data set obj365
    • In the backbone, add the alpha parameter to the block branch
    • Optimize the end-to-end inference speed and improve the training convergence speed

Legacy model

Table of Contents

Introduction

PP-YOLOE is an excellent single-stage anchor-free model based on PP-YOLOv2, surpassing a variety of popular YOLO models. PP-YOLOE has a series of models, named s/m/l/x, which are configured through width multiplier and depth multiplier. PP-YOLOE avoids using special operators, such as Deformable Convolution or Matrix NMS, to be deployed friendly on various hardware. For more details, please refer to our report.

PP-YOLOE+_l achieves 53.3 mAP on COCO test-dev2017 dataset with 78.1 FPS on Tesla V100. While using TensorRT FP16, PP-YOLOE+_l can be further accelerated to 149.2 FPS. PP-YOLOE+_s/m/x also have excellent accuracy and speed performance, which can be found in Model Zoo

PP-YOLOE is composed of following methods:

Model Zoo

Model Zoo on COCO

Tiny model

Model Epoch GPU number images/GPU backbone input shape Box APval
0.5:0.95
Box APtest
0.5:0.95
Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE+_s 80 8 8 cspresnet-s 640 43.7 43.9 7.93 17.36 208.3 333.3 model config
PP-YOLOE+_m 80 8 8 cspresnet-m 640 49.8 50.0 23.43 49.91 123.4 208.3 model config
PP-YOLOE+_l 80 8 8 cspresnet-l 640 52.9 53.3 52.20 110.07 78.1 149.2 model config
PP-YOLOE+_x 80 8 8 cspresnet-x 640 54.7 54.9 98.42 206.59 45.0 95.2 model config

Comprehensive Metrics

Model Epoch GPU number images/GPU backbone input shape Box APval
0.5:0.95
Box APtest
0.5:0.95
Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE-t-P2 300 8 8 cspresnet-t 320 34.7 50.0 6.82 4.78 - - model config
PP-YOLOE-t-P2 300 8 8 cspresnet-t 416 36.4 52.3 6.82 8.07 - - model config
PP-YOLOE+_t-P2(aux) 300 8 8 cspresnet-t 320 36.3 51.7 6.00 15.46 - - model config
PP-YOLOE+_t-P2(aux) 300 8 8 cspresnet-t 416 39.0 55.1 6.00 26.13 - - model config

End-to-end Speed

Model Epoch AP0.5:0.95 AP0.5 AP0.75 APsmall APmedium APlarge ARsmall ARmedium ARlarge
PP-YOLOE+_s 80 43.7 60.6 47.9 26.5 47.5 59.0 46.7 71.4 81.7
PP-YOLOE+_m 80 49.8 67.1 54.5 31.8 53.9 66.2 53.3 75.0 84.6
PP-YOLOE+_l 80 52.9 70.1 57.9 35.2 57.5 69.1 56.0 77.9 86.9
PP-YOLOE+_x 80 54.7 72.0 59.9 37.9 59.3 70.4 57.0 78.7 87.2

Notes:

  • PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset.
  • The model weights in the table of Comprehensive Metrics are the same as that in the original Model Zoo, and evaluated on val2017.
  • PP-YOLOE used 8 GPUs for mixed precision training, if GPU number or mini-batch size is changed, learning rate should be adjusted according to the formula lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault).
  • PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.6.5, TensorRT 6.0.1.8 in TensorRT mode.
  • Refer to Speed testing to reproduce the speed testing results of PP-YOLOE.
  • If you set --run_benchmark=True,you should install these dependencies at first, pip install pynvml psutil GPUtil.
  • End-to-end speed test includes pre-processing + inference + post-processing and NMS time, using Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz, single Tesla V100, CUDA 11.2, CUDNN 8.2.0, TensorRT 8.0.1.6.

Model Zoo on Objects365

Model AP0.5:0.95 TRT-FP32(fps) TRT-FP16(fps)
PP-YOLOE+_s 43.7 44.44 47.85
PP-YOLOE+_m 49.8 39.06 43.86
PP-YOLOE+_l 52.9 34.01 42.02
PP-YOLOE+_x 54.7 26.88 36.76

Notes:

Model Zoo on VOC

Model Epoch Machine number GPU number images/GPU backbone input shape Box AP0.5 Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE+_s 60 3 8 8 cspresnet-s 640 18.1 7.93 17.36 208.3 333.3 model config
PP-YOLOE+_m 60 4 8 8 cspresnet-m 640 25.0 23.43 49.91 123.4 208.3 model config
PP-YOLOE+_l 60 3 8 8 cspresnet-l 640 30.8 52.20 110.07 78.1 149.2 model config
PP-YOLOE+_x 60 4 8 8 cspresnet-x 640 32.7 98.42 206.59 45.0 95.2 model config

Feature Models

The PaddleDetection team provides configs and weights of various feature detection models based on PP-YOLOE, which users can download for use:

Model Epoch GPU number images/GPU backbone input shape Box AP0.5 Params(M) FLOPs(G) V100 FP32(FPS) V100 TensorRT FP16(FPS) download config
PP-YOLOE+_s 30 8 8 cspresnet-s 640 86.7 7.93 17.36 208.3 333.3 model config
PP-YOLOE+_l 30 8 8 cspresnet-l 640 89.0 52.20 110.07 78.1 149.2 model config
Scenarios Related Datasets Links
Pedestrian Detection CrowdHuman pphuman
Vehicle Detection BDD100K, UA-DETRAC ppvehicle
Small Object Detection VisDrone、DOTA、xView smalldet
Densely Packed Object Detection SKU110k application
Rotated Object Detection DOTA PP-YOLOE-R

Getting Start

Datasets and Metrics

PaddleDetection team provides COCO and VOC dataset , decompress and place it under PaddleDetection/dataset/:

wget https://bj.bcebos.com/v1/paddledet/data/coco.tar
# tar -xvf coco.tar

wget https://bj.bcebos.com/v1/paddledet/data/voc.zip
# unzip voc.zip

Note:

Custom dataset

1.For the annotation of custom dataset, please refer to DetAnnoTools;

2.For training preparation of custom dataset,please refer to PrepareDataSet.

Training

Training PP-YOLOE+ on 8 GPUs with following command

python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml --eval --amp

Notes:

  • If you need to evaluate while training, please add --eval.
  • PP-YOLOE+ supports mixed precision training, please add --amp.
  • PaddleDetection supports multi-machine distribued training, you can refer to DistributedTraining tutorial.

Evaluation

Evaluating PP-YOLOE+ on COCO val2017 dataset in single GPU with following commands:

CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams

For evaluation on COCO test-dev2017 dataset, please download COCO test-dev2017 dataset from COCO dataset download and decompress to COCO dataset directory and configure EvalDataset like configs/ppyolo/ppyolo_test.yml.

Inference

Inference images in single GPU with following commands, use --infer_img to inference a single image and --infer_dir to inference all images in the directory.

# inference single image
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg

# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams --infer_dir=demo

Exporting models

For deployment on GPU or speed testing, model should be first exported to inference model using tools/export_model.py.

Exporting PP-YOLOE+ for Paddle Inference without TensorRT, use following command

python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams

Exporting PP-YOLOE+ for Paddle Inference with TensorRT for better performance, use following command with extra -o trt=True setting.

python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams trt=True

If you want to export PP-YOLOE model to ONNX format, use following command refer to PaddleDetection Model Export as ONNX Format Tutorial.

# export inference model
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams trt=True

# install paddle2onnx
pip install paddle2onnx

# convert to onnx
paddle2onnx --model_dir output_inference/ppyoloe_plus_crn_l_80e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_plus_crn_l_80e_coco.onnx

Notes: ONNX model only supports batch_size=1 now

Speed testing

For fair comparison, the speed in Model Zoo do not contains the time cost of data reading and post-processing(NMS), which is same as YOLOv4(AlexyAB) in testing method. Thus, you should export model with extra -o exclude_nms=True setting.

Using Paddle Inference without TensorRT to test speed, run following command

# export inference model
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams exclude_nms=True

# speed testing with run_benchmark=True
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=gpu --run_benchmark=True

Using Paddle Inference with TensorRT to test speed, run following command

# export inference model with trt=True
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams exclude_nms=True trt=True

# speed testing with run_benchmark=True,run_mode=trt_fp32/trt_fp16
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=trt_fp16 --device=gpu --run_benchmark=True

Using TensorRT Inference with ONNX to test speed, run following command

# export inference model with trt=True
python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams exclude_nms=True trt=True

# convert to onnx
paddle2onnx --model_dir output_inference/ppyoloe_plus_crn_s_80e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_crn_s_80e_coco.onnx

# trt inference using fp16 and batch_size=1
trtexec --onnx=./ppyoloe_plus_crn_s_80e_coco.onnx --saveEngine=./ppyoloe_s_bs1.engine --workspace=1024 --avgRuns=1000 --shapes=image:1x3x640x640,scale_factor:1x2 --fp16

# trt inference using fp16 and batch_size=32
trtexec --onnx=./ppyoloe_plus_crn_s_80e_coco.onnx --saveEngine=./ppyoloe_s_bs32.engine --workspace=1024 --avgRuns=1000 --shapes=image:32x3x640x640,scale_factor:32x2 --fp16

# Using the above script, T4 and tensorrt 7.2 machine, the speed of PPYOLOE-s model is as follows,

# batch_size=1, 2.80ms, 357fps
# batch_size=32, 67.69ms, 472fps

Deployment

PP-YOLOE can be deployed by following approches:

Next, we will introduce how to use Paddle Inference to deploy PP-YOLOE models in TensorRT FP16 mode.

First, refer to Paddle Inference Docs, download and install packages corresponding to CUDA, CUDNN and TensorRT version.

Then, Exporting PP-YOLOE for Paddle Inference with TensorRT, use following command.

python tools/export_model.py -c configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams trt=True

Finally, inference in TensorRT FP16 mode.

# inference single image
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_mode=trt_fp16

# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_crn_l_80e_coco --image_dir=demo/ --device=gpu  --run_mode=trt_fp16

Notes:

  • TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set use_static=True in enable_tensorrt_engine. In this way, the serialized file generated will be saved in the output_inference folder, and the saved serialized file will be loaded the next time when TensorRT is executed.
  • PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions.

Other Datasets

Model AP AP50
YOLOX 22.6 37.5
YOLOv5 26.0 42.7
PP-YOLOE 30.5 46.4

Notes

  • Here, we use VisDrone dataset, and to detect 9 objects including person, bicycles, car, van, truck, tricyle, awning-tricyle, bus, motor.
  • Above models trained using official default config, and load pretrained parameters on COCO dataset.
  • Due to the limited time, more verification results will be supplemented in the future. You are also welcome to contribute to PP-YOLOE

Appendix

Ablation experiments of PP-YOLOE.

NO. Model Box APval Params(M) FLOPs(G) V100 FP32 FPS
A PP-YOLOv2 49.1 54.58 115.77 68.9
B A + Anchor-free 48.8 54.27 114.78 69.8
C B + CSPRepResNet 49.5 47.42 101.87 85.5
D C + TAL 50.4 48.32 104.75 84.0
E D + ET-Head 50.9 52.20 110.07 78.1