mot_ppyoloe_l_36e_ppvehicle.yml 1.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. _BASE_: [
  2. '../datasets/coco_detection.yml',
  3. '../runtime.yml',
  4. '../ppyoloe/_base_/optimizer_300e.yml',
  5. '../ppyoloe/_base_/ppyoloe_crn.yml',
  6. '../ppyoloe/_base_/ppyoloe_reader.yml',
  7. ]
  8. log_iter: 100
  9. snapshot_epoch: 4
  10. weights: output/mot_ppyoloe_l_36e_ppvehicle/model_final
  11. pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
  12. depth_mult: 1.0
  13. width_mult: 1.0
  14. num_classes: 1
  15. TrainDataset:
  16. !COCODataSet
  17. image_dir: ""
  18. anno_path: annotations/train_all.json
  19. dataset_dir: dataset/ppvehicle
  20. data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
  21. allow_empty: true
  22. EvalDataset:
  23. !COCODataSet
  24. image_dir: ""
  25. anno_path: annotations/val_all.json
  26. dataset_dir: dataset/ppvehicle
  27. TestDataset:
  28. !ImageFolder
  29. anno_path: annotations/val_all.json
  30. dataset_dir: dataset/ppvehicle
  31. TrainReader:
  32. batch_size: 8
  33. epoch: 36
  34. LearningRate:
  35. base_lr: 0.001
  36. schedulers:
  37. - !CosineDecay
  38. max_epochs: 43
  39. - !LinearWarmup
  40. start_factor: 0.
  41. epochs: 1
  42. PPYOLOEHead:
  43. static_assigner_epoch: -1
  44. nms:
  45. name: MultiClassNMS
  46. nms_top_k: 1000
  47. keep_top_k: 100
  48. score_threshold: 0.01
  49. nms_threshold: 0.6