English | 简体中文
我们提供了针对不同场景的基于PaddlePaddle的检测模型,用户可以下载模型进行使用。
任务 | 算法 | 精度(Box AP) | 下载 | 配置文件 |
---|---|---|---|---|
行人检测 | YOLOv3 | 51.8 | 下载链接 | 配置文件 |
行人检测的主要应用有智能监控。在监控场景中,大多是从公共区域的监控摄像头视角拍摄行人,获取图像后再进行行人检测。
Backbone为Dacknet53的YOLOv3。
PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件yolov3_darknet53_270e_coco.yml,与之相比,在进行行人检测的模型训练时,我们对以下参数进行了修改:
模型在我们针对监控场景的内部数据上精度指标为:
IOU=.5时的AP为 0.792。
IOU=.5-.95时的AP为 0.518。
用户可以使用我们训练好的模型进行行人检测:
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/pphuman/pedestrian_yolov3/pedestrian_yolov3_darknet.yml \
-o weights=https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams \
--infer_dir configs/pphuman/pedestrian_yolov3/demo \
--draw_threshold 0.3 \
--output_dir configs/pphuman/pedestrian_yolov3/demo/output
预测结果示例: