ocsort_yolox.yml 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. # This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT.
  2. _BASE_: [
  3. '../bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml',
  4. '../bytetrack/_base_/mix_det.yml',
  5. '../bytetrack/_base_/yolox_mot_reader_800x1440.yml'
  6. ]
  7. weights: output/ocsort_yolox/model_final
  8. log_iter: 20
  9. snapshot_epoch: 2
  10. metric: MOT # eval/infer mode
  11. num_classes: 1
  12. architecture: ByteTrack
  13. pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolox_x_300e_coco.pdparams
  14. ByteTrack:
  15. detector: YOLOX
  16. reid: None
  17. tracker: OCSORTTracker
  18. det_weights: https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_mix_mot_ch.pdparams
  19. reid_weights: None
  20. depth_mult: 1.33
  21. width_mult: 1.25
  22. YOLOX:
  23. backbone: CSPDarkNet
  24. neck: YOLOCSPPAN
  25. head: YOLOXHead
  26. input_size: [800, 1440]
  27. size_stride: 32
  28. size_range: [18, 22] # multi-scale range [576*1024 ~ 800*1440], w/h ratio=1.8
  29. CSPDarkNet:
  30. arch: "X"
  31. return_idx: [2, 3, 4]
  32. depthwise: False
  33. YOLOCSPPAN:
  34. depthwise: False
  35. # Tracking requires higher quality boxes, so NMS score_threshold will be higher
  36. YOLOXHead:
  37. l1_epoch: 20
  38. depthwise: False
  39. loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0}
  40. assigner:
  41. name: SimOTAAssigner
  42. candidate_topk: 10
  43. use_vfl: False
  44. nms:
  45. name: MultiClassNMS
  46. nms_top_k: 1000
  47. keep_top_k: 100
  48. score_threshold: 0.1
  49. nms_threshold: 0.7
  50. # For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%.
  51. # For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot.
  52. OCSORTTracker:
  53. det_thresh: 0.6
  54. max_age: 30
  55. min_hits: 3
  56. iou_threshold: 0.3
  57. delta_t: 3
  58. inertia: 0.2
  59. vertical_ratio: 1.6
  60. min_box_area: 100
  61. use_byte: False
  62. # MOTDataset for MOT evaluation and inference
  63. EvalMOTDataset:
  64. !MOTImageFolder
  65. dataset_dir: dataset/mot
  66. data_root: MOT17/images/half
  67. keep_ori_im: True # set as True in DeepSORT and ByteTrack
  68. TestMOTDataset:
  69. !MOTImageFolder
  70. dataset_dir: dataset/mot
  71. keep_ori_im: True # set True if save visualization images or video