yolox_convnext_s_36e_coco.yml 1.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. _BASE_: [
  2. '../datasets/coco_detection.yml',
  3. '../runtime.yml',
  4. '../yolox/_base_/yolox_cspdarknet.yml',
  5. '../yolox/_base_/yolox_reader.yml'
  6. ]
  7. depth_mult: 0.33
  8. width_mult: 0.50
  9. log_iter: 100
  10. snapshot_epoch: 5
  11. weights: output/yolox_convnext_s_36e_coco/model_final
  12. pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/convnext_tiny_22k_224.pdparams
  13. YOLOX:
  14. backbone: ConvNeXt
  15. neck: YOLOCSPPAN
  16. head: YOLOXHead
  17. size_stride: 32
  18. size_range: [15, 25] # multi-scale range [480*480 ~ 800*800]
  19. ConvNeXt:
  20. arch: 'tiny'
  21. drop_path_rate: 0.4
  22. layer_scale_init_value: 1.0
  23. return_idx: [1, 2, 3]
  24. TrainReader:
  25. batch_size: 8
  26. mosaic_epoch: 30
  27. YOLOXHead:
  28. l1_epoch: 30
  29. nms:
  30. name: MultiClassNMS
  31. nms_top_k: 10000
  32. keep_top_k: 1000
  33. score_threshold: 0.001
  34. nms_threshold: 0.65
  35. epoch: 36
  36. LearningRate:
  37. base_lr: 0.0002
  38. schedulers:
  39. - !PiecewiseDecay
  40. gamma: 0.1
  41. milestones: [36]
  42. use_warmup: false
  43. OptimizerBuilder:
  44. regularizer: false
  45. optimizer:
  46. type: AdamW
  47. weight_decay: 0.0005