123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- from PIL import Image
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import math
- import time
- import traceback
- import paddle
- import tools.infer.utility as utility
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read
- logger = get_logger()
- class TextRecognizer(object):
- def __init__(self, args):
- self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
- self.rec_batch_num = args.rec_batch_num
- self.rec_algorithm = args.rec_algorithm
- postprocess_params = {
- 'name': 'CTCLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- if self.rec_algorithm == "SRN":
- postprocess_params = {
- 'name': 'SRNLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "RARE":
- postprocess_params = {
- 'name': 'AttnLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == 'NRTR':
- postprocess_params = {
- 'name': 'NRTRLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "SAR":
- postprocess_params = {
- 'name': 'SARLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "VisionLAN":
- postprocess_params = {
- 'name': 'VLLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == 'ViTSTR':
- postprocess_params = {
- 'name': 'ViTSTRLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == 'ABINet':
- postprocess_params = {
- 'name': 'ABINetLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "SPIN":
- postprocess_params = {
- 'name': 'SPINLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "RobustScanner":
- postprocess_params = {
- 'name': 'SARLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char,
- "rm_symbol": True
- }
- elif self.rec_algorithm == 'RFL':
- postprocess_params = {
- 'name': 'RFLLabelDecode',
- "character_dict_path": None,
- "use_space_char": args.use_space_char
- }
- elif self.rec_algorithm == "PREN":
- postprocess_params = {'name': 'PRENLabelDecode'}
- elif self.rec_algorithm == "CAN":
- self.inverse = args.rec_image_inverse
- postprocess_params = {
- 'name': 'CANLabelDecode',
- "character_dict_path": args.rec_char_dict_path,
- "use_space_char": args.use_space_char
- }
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- utility.create_predictor(args, 'rec', logger)
- self.benchmark = args.benchmark
- self.use_onnx = args.use_onnx
- if args.benchmark:
- import auto_log
- pid = os.getpid()
- gpu_id = utility.get_infer_gpuid()
- self.autolog = auto_log.AutoLogger(
- model_name="rec",
- model_precision=args.precision,
- batch_size=args.rec_batch_num,
- data_shape="dynamic",
- save_path=None, #args.save_log_path,
- inference_config=self.config,
- pids=pid,
- process_name=None,
- gpu_ids=gpu_id if args.use_gpu else None,
- time_keys=[
- 'preprocess_time', 'inference_time', 'postprocess_time'
- ],
- warmup=0,
- logger=logger)
- def resize_norm_img(self, img, max_wh_ratio):
- imgC, imgH, imgW = self.rec_image_shape
- if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR':
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # return padding_im
- image_pil = Image.fromarray(np.uint8(img))
- if self.rec_algorithm == 'ViTSTR':
- img = image_pil.resize([imgW, imgH], Image.BICUBIC)
- else:
- img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
- img = np.array(img)
- norm_img = np.expand_dims(img, -1)
- norm_img = norm_img.transpose((2, 0, 1))
- if self.rec_algorithm == 'ViTSTR':
- norm_img = norm_img.astype(np.float32) / 255.
- else:
- norm_img = norm_img.astype(np.float32) / 128. - 1.
- return norm_img
- elif self.rec_algorithm == 'RFL':
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_CUBIC)
- resized_image = resized_image.astype('float32')
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- resized_image -= 0.5
- resized_image /= 0.5
- return resized_image
- assert imgC == img.shape[2]
- imgW = int((imgH * max_wh_ratio))
- if self.use_onnx:
- w = self.input_tensor.shape[3:][0]
- if isinstance(w, str):
- pass
- elif w is not None and w > 0:
- imgW = w
- h, w = img.shape[:2]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- if self.rec_algorithm == 'RARE':
- if resized_w > self.rec_image_shape[2]:
- resized_w = self.rec_image_shape[2]
- imgW = self.rec_image_shape[2]
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def resize_norm_img_vl(self, img, image_shape):
- imgC, imgH, imgW = image_shape
- img = img[:, :, ::-1] # bgr2rgb
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- return resized_image
- def resize_norm_img_srn(self, img, image_shape):
- imgC, imgH, imgW = image_shape
- img_black = np.zeros((imgH, imgW))
- im_hei = img.shape[0]
- im_wid = img.shape[1]
- if im_wid <= im_hei * 1:
- img_new = cv2.resize(img, (imgH * 1, imgH))
- elif im_wid <= im_hei * 2:
- img_new = cv2.resize(img, (imgH * 2, imgH))
- elif im_wid <= im_hei * 3:
- img_new = cv2.resize(img, (imgH * 3, imgH))
- else:
- img_new = cv2.resize(img, (imgW, imgH))
- img_np = np.asarray(img_new)
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
- img_black[:, 0:img_np.shape[1]] = img_np
- img_black = img_black[:, :, np.newaxis]
- row, col, c = img_black.shape
- c = 1
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
- def srn_other_inputs(self, image_shape, num_heads, max_text_length):
- imgC, imgH, imgW = image_shape
- feature_dim = int((imgH / 8) * (imgW / 8))
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
- (feature_dim, 1)).astype('int64')
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
- (max_text_length, 1)).astype('int64')
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
- [-1, 1, max_text_length, max_text_length])
- gsrm_slf_attn_bias1 = np.tile(
- gsrm_slf_attn_bias1,
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
- [-1, 1, max_text_length, max_text_length])
- gsrm_slf_attn_bias2 = np.tile(
- gsrm_slf_attn_bias2,
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
- encoder_word_pos = encoder_word_pos[np.newaxis, :]
- gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
- return [
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2
- ]
- def process_image_srn(self, img, image_shape, num_heads, max_text_length):
- norm_img = self.resize_norm_img_srn(img, image_shape)
- norm_img = norm_img[np.newaxis, :]
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
- self.srn_other_inputs(image_shape, num_heads, max_text_length)
- gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
- gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
- encoder_word_pos = encoder_word_pos.astype(np.int64)
- gsrm_word_pos = gsrm_word_pos.astype(np.int64)
- return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
- gsrm_slf_attn_bias2)
- def resize_norm_img_sar(self, img, image_shape,
- width_downsample_ratio=0.25):
- imgC, imgH, imgW_min, imgW_max = image_shape
- h = img.shape[0]
- w = img.shape[1]
- valid_ratio = 1.0
- # make sure new_width is an integral multiple of width_divisor.
- width_divisor = int(1 / width_downsample_ratio)
- # resize
- ratio = w / float(h)
- resize_w = math.ceil(imgH * ratio)
- if resize_w % width_divisor != 0:
- resize_w = round(resize_w / width_divisor) * width_divisor
- if imgW_min is not None:
- resize_w = max(imgW_min, resize_w)
- if imgW_max is not None:
- valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
- resize_w = min(imgW_max, resize_w)
- resized_image = cv2.resize(img, (resize_w, imgH))
- resized_image = resized_image.astype('float32')
- # norm
- if image_shape[0] == 1:
- resized_image = resized_image / 255
- resized_image = resized_image[np.newaxis, :]
- else:
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- resize_shape = resized_image.shape
- padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
- padding_im[:, :, 0:resize_w] = resized_image
- pad_shape = padding_im.shape
- return padding_im, resize_shape, pad_shape, valid_ratio
- def resize_norm_img_spin(self, img):
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # return padding_im
- img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
- img = np.array(img, np.float32)
- img = np.expand_dims(img, -1)
- img = img.transpose((2, 0, 1))
- mean = [127.5]
- std = [127.5]
- mean = np.array(mean, dtype=np.float32)
- std = np.array(std, dtype=np.float32)
- mean = np.float32(mean.reshape(1, -1))
- stdinv = 1 / np.float32(std.reshape(1, -1))
- img -= mean
- img *= stdinv
- return img
- def resize_norm_img_svtr(self, img, image_shape):
- imgC, imgH, imgW = image_shape
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- return resized_image
- def resize_norm_img_abinet(self, img, image_shape):
- imgC, imgH, imgW = image_shape
- resized_image = cv2.resize(
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
- resized_image = resized_image.astype('float32')
- resized_image = resized_image / 255.
- mean = np.array([0.485, 0.456, 0.406])
- std = np.array([0.229, 0.224, 0.225])
- resized_image = (
- resized_image - mean[None, None, ...]) / std[None, None, ...]
- resized_image = resized_image.transpose((2, 0, 1))
- resized_image = resized_image.astype('float32')
- return resized_image
- def norm_img_can(self, img, image_shape):
- img = cv2.cvtColor(
- img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
- if self.inverse:
- img = 255 - img
- if self.rec_image_shape[0] == 1:
- h, w = img.shape
- _, imgH, imgW = self.rec_image_shape
- if h < imgH or w < imgW:
- padding_h = max(imgH - h, 0)
- padding_w = max(imgW - w, 0)
- img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
- 'constant',
- constant_values=(255))
- img = img_padded
- img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
- img = img.astype('float32')
- return img
- def __call__(self, img_list):
- img_num = len(img_list)
- # Calculate the aspect ratio of all text bars
- width_list = []
- for img in img_list:
- width_list.append(img.shape[1] / float(img.shape[0]))
- # Sorting can speed up the recognition process
- indices = np.argsort(np.array(width_list))
- rec_res = [['', 0.0]] * img_num
- batch_num = self.rec_batch_num
- st = time.time()
- if self.benchmark:
- self.autolog.times.start()
- for beg_img_no in range(0, img_num, batch_num):
- end_img_no = min(img_num, beg_img_no + batch_num)
- norm_img_batch = []
- if self.rec_algorithm == "SRN":
- encoder_word_pos_list = []
- gsrm_word_pos_list = []
- gsrm_slf_attn_bias1_list = []
- gsrm_slf_attn_bias2_list = []
- if self.rec_algorithm == "SAR":
- valid_ratios = []
- imgC, imgH, imgW = self.rec_image_shape[:3]
- max_wh_ratio = imgW / imgH
- # max_wh_ratio = 0
- for ino in range(beg_img_no, end_img_no):
- h, w = img_list[indices[ino]].shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- for ino in range(beg_img_no, end_img_no):
- if self.rec_algorithm == "SAR":
- norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
- img_list[indices[ino]], self.rec_image_shape)
- norm_img = norm_img[np.newaxis, :]
- valid_ratio = np.expand_dims(valid_ratio, axis=0)
- valid_ratios.append(valid_ratio)
- norm_img_batch.append(norm_img)
- elif self.rec_algorithm == "SRN":
- norm_img = self.process_image_srn(
- img_list[indices[ino]], self.rec_image_shape, 8, 25)
- encoder_word_pos_list.append(norm_img[1])
- gsrm_word_pos_list.append(norm_img[2])
- gsrm_slf_attn_bias1_list.append(norm_img[3])
- gsrm_slf_attn_bias2_list.append(norm_img[4])
- norm_img_batch.append(norm_img[0])
- elif self.rec_algorithm == "SVTR":
- norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
- self.rec_image_shape)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- elif self.rec_algorithm in ["VisionLAN", "PREN"]:
- norm_img = self.resize_norm_img_vl(img_list[indices[ino]],
- self.rec_image_shape)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- elif self.rec_algorithm == 'SPIN':
- norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- elif self.rec_algorithm == "ABINet":
- norm_img = self.resize_norm_img_abinet(
- img_list[indices[ino]], self.rec_image_shape)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- elif self.rec_algorithm == "RobustScanner":
- norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
- img_list[indices[ino]],
- self.rec_image_shape,
- width_downsample_ratio=0.25)
- norm_img = norm_img[np.newaxis, :]
- valid_ratio = np.expand_dims(valid_ratio, axis=0)
- valid_ratios = []
- valid_ratios.append(valid_ratio)
- norm_img_batch.append(norm_img)
- word_positions_list = []
- word_positions = np.array(range(0, 40)).astype('int64')
- word_positions = np.expand_dims(word_positions, axis=0)
- word_positions_list.append(word_positions)
- elif self.rec_algorithm == "CAN":
- norm_img = self.norm_img_can(img_list[indices[ino]],
- max_wh_ratio)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- norm_image_mask = np.ones(norm_img.shape, dtype='float32')
- word_label = np.ones([1, 36], dtype='int64')
- norm_img_mask_batch = []
- word_label_list = []
- norm_img_mask_batch.append(norm_image_mask)
- word_label_list.append(word_label)
- else:
- norm_img = self.resize_norm_img(img_list[indices[ino]],
- max_wh_ratio)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- norm_img_batch = np.concatenate(norm_img_batch)
- norm_img_batch = norm_img_batch.copy()
- if self.benchmark:
- self.autolog.times.stamp()
- if self.rec_algorithm == "SRN":
- encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
- gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
- gsrm_slf_attn_bias1_list = np.concatenate(
- gsrm_slf_attn_bias1_list)
- gsrm_slf_attn_bias2_list = np.concatenate(
- gsrm_slf_attn_bias2_list)
- inputs = [
- norm_img_batch,
- encoder_word_pos_list,
- gsrm_word_pos_list,
- gsrm_slf_attn_bias1_list,
- gsrm_slf_attn_bias2_list,
- ]
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = norm_img_batch
- outputs = self.predictor.run(self.output_tensors,
- input_dict)
- preds = {"predict": outputs[2]}
- else:
- input_names = self.predictor.get_input_names()
- for i in range(len(input_names)):
- input_tensor = self.predictor.get_input_handle(
- input_names[i])
- input_tensor.copy_from_cpu(inputs[i])
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.benchmark:
- self.autolog.times.stamp()
- preds = {"predict": outputs[2]}
- elif self.rec_algorithm == "SAR":
- valid_ratios = np.concatenate(valid_ratios)
- inputs = [
- norm_img_batch,
- np.array(
- [valid_ratios], dtype=np.float32),
- ]
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = norm_img_batch
- outputs = self.predictor.run(self.output_tensors,
- input_dict)
- preds = outputs[0]
- else:
- input_names = self.predictor.get_input_names()
- for i in range(len(input_names)):
- input_tensor = self.predictor.get_input_handle(
- input_names[i])
- input_tensor.copy_from_cpu(inputs[i])
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.benchmark:
- self.autolog.times.stamp()
- preds = outputs[0]
- elif self.rec_algorithm == "RobustScanner":
- valid_ratios = np.concatenate(valid_ratios)
- word_positions_list = np.concatenate(word_positions_list)
- inputs = [norm_img_batch, valid_ratios, word_positions_list]
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = norm_img_batch
- outputs = self.predictor.run(self.output_tensors,
- input_dict)
- preds = outputs[0]
- else:
- input_names = self.predictor.get_input_names()
- for i in range(len(input_names)):
- input_tensor = self.predictor.get_input_handle(
- input_names[i])
- input_tensor.copy_from_cpu(inputs[i])
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.benchmark:
- self.autolog.times.stamp()
- preds = outputs[0]
- elif self.rec_algorithm == "CAN":
- norm_img_mask_batch = np.concatenate(norm_img_mask_batch)
- word_label_list = np.concatenate(word_label_list)
- inputs = [norm_img_batch, norm_img_mask_batch, word_label_list]
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = norm_img_batch
- outputs = self.predictor.run(self.output_tensors,
- input_dict)
- preds = outputs
- else:
- input_names = self.predictor.get_input_names()
- input_tensor = []
- for i in range(len(input_names)):
- input_tensor_i = self.predictor.get_input_handle(
- input_names[i])
- input_tensor_i.copy_from_cpu(inputs[i])
- input_tensor.append(input_tensor_i)
- self.input_tensor = input_tensor
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.benchmark:
- self.autolog.times.stamp()
- preds = outputs
- else:
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = norm_img_batch
- outputs = self.predictor.run(self.output_tensors,
- input_dict)
- preds = outputs[0]
- else:
- self.input_tensor.copy_from_cpu(norm_img_batch)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.benchmark:
- self.autolog.times.stamp()
- if len(outputs) != 1:
- preds = outputs
- else:
- preds = outputs[0]
- rec_result = self.postprocess_op(preds)
- for rno in range(len(rec_result)):
- rec_res[indices[beg_img_no + rno]] = rec_result[rno]
- if self.benchmark:
- self.autolog.times.end(stamp=True)
- return rec_res, time.time() - st
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- text_recognizer = TextRecognizer(args)
- valid_image_file_list = []
- img_list = []
- logger.info(
- "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
- "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
- )
- # warmup 2 times
- if args.warmup:
- img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
- for i in range(2):
- res = text_recognizer([img] * int(args.rec_batch_num))
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = cv2.imread(image_file)
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- valid_image_file_list.append(image_file)
- img_list.append(img)
- try:
- rec_res, _ = text_recognizer(img_list)
- except Exception as E:
- logger.info(traceback.format_exc())
- logger.info(E)
- exit()
- for ino in range(len(img_list)):
- logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
- rec_res[ino]))
- if args.benchmark:
- text_recognizer.autolog.report()
- if __name__ == "__main__":
- main(utility.parse_args())
|