123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import numpy as np
- import time
- import sys
- import tools.infer.utility as utility
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppocr.data import create_operators, transform
- from ppocr.postprocess import build_post_process
- import json
- logger = get_logger()
- class TextDetector(object):
- def __init__(self, args):
- self.args = args
- self.det_algorithm = args.det_algorithm
- self.use_onnx = args.use_onnx
- pre_process_list = [{
- 'DetResizeForTest': {
- 'limit_side_len': args.det_limit_side_len,
- 'limit_type': args.det_limit_type,
- }
- }, {
- 'NormalizeImage': {
- 'std': [0.229, 0.224, 0.225],
- 'mean': [0.485, 0.456, 0.406],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': ['image', 'shape']
- }
- }]
- postprocess_params = {}
- if self.det_algorithm == "DB":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- postprocess_params["score_mode"] = args.det_db_score_mode
- postprocess_params["box_type"] = args.det_box_type
- elif self.det_algorithm == "DB++":
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = args.det_db_thresh
- postprocess_params["box_thresh"] = args.det_db_box_thresh
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
- postprocess_params["use_dilation"] = args.use_dilation
- postprocess_params["score_mode"] = args.det_db_score_mode
- postprocess_params["box_type"] = args.det_box_type
- pre_process_list[1] = {
- 'NormalizeImage': {
- 'std': [1.0, 1.0, 1.0],
- 'mean':
- [0.48109378172549, 0.45752457890196, 0.40787054090196],
- 'scale': '1./255.',
- 'order': 'hwc'
- }
- }
- elif self.det_algorithm == "EAST":
- postprocess_params['name'] = 'EASTPostProcess'
- postprocess_params["score_thresh"] = args.det_east_score_thresh
- postprocess_params["cover_thresh"] = args.det_east_cover_thresh
- postprocess_params["nms_thresh"] = args.det_east_nms_thresh
- elif self.det_algorithm == "SAST":
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'resize_long': args.det_limit_side_len
- }
- }
- postprocess_params['name'] = 'SASTPostProcess'
- postprocess_params["score_thresh"] = args.det_sast_score_thresh
- postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
- if args.det_box_type == 'poly':
- postprocess_params["sample_pts_num"] = 6
- postprocess_params["expand_scale"] = 1.2
- postprocess_params["shrink_ratio_of_width"] = 0.2
- else:
- postprocess_params["sample_pts_num"] = 2
- postprocess_params["expand_scale"] = 1.0
- postprocess_params["shrink_ratio_of_width"] = 0.3
- elif self.det_algorithm == "PSE":
- postprocess_params['name'] = 'PSEPostProcess'
- postprocess_params["thresh"] = args.det_pse_thresh
- postprocess_params["box_thresh"] = args.det_pse_box_thresh
- postprocess_params["min_area"] = args.det_pse_min_area
- postprocess_params["box_type"] = args.det_box_type
- postprocess_params["scale"] = args.det_pse_scale
- elif self.det_algorithm == "FCE":
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'rescale_img': [1080, 736]
- }
- }
- postprocess_params['name'] = 'FCEPostProcess'
- postprocess_params["scales"] = args.scales
- postprocess_params["alpha"] = args.alpha
- postprocess_params["beta"] = args.beta
- postprocess_params["fourier_degree"] = args.fourier_degree
- postprocess_params["box_type"] = args.det_box_type
- elif self.det_algorithm == "CT":
- pre_process_list[0] = {'ScaleAlignedShort': {'short_size': 640}}
- postprocess_params['name'] = 'CTPostProcess'
- else:
- logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
- sys.exit(0)
- self.preprocess_op = create_operators(pre_process_list)
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
- args, 'det', logger)
- if self.use_onnx:
- img_h, img_w = self.input_tensor.shape[2:]
- if isinstance(img_h, str) or isinstance(img_w, str):
- pass
- elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
- pre_process_list[0] = {
- 'DetResizeForTest': {
- 'image_shape': [img_h, img_w]
- }
- }
- self.preprocess_op = create_operators(pre_process_list)
- if args.benchmark:
- import auto_log
- pid = os.getpid()
- gpu_id = utility.get_infer_gpuid()
- self.autolog = auto_log.AutoLogger(
- model_name="det",
- model_precision=args.precision,
- batch_size=1,
- data_shape="dynamic",
- save_path=None,
- inference_config=self.config,
- pids=pid,
- process_name=None,
- gpu_ids=gpu_id if args.use_gpu else None,
- time_keys=[
- 'preprocess_time', 'inference_time', 'postprocess_time'
- ],
- warmup=2,
- logger=logger)
- def order_points_clockwise(self, pts):
- rect = np.zeros((4, 2), dtype="float32")
- s = pts.sum(axis=1)
- rect[0] = pts[np.argmin(s)]
- rect[2] = pts[np.argmax(s)]
- tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
- diff = np.diff(np.array(tmp), axis=1)
- rect[1] = tmp[np.argmin(diff)]
- rect[3] = tmp[np.argmax(diff)]
- return rect
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- if type(box) is list:
- box = np.array(box)
- box = self.order_points_clockwise(box)
- box = self.clip_det_res(box, img_height, img_width)
- rect_width = int(np.linalg.norm(box[0] - box[1]))
- rect_height = int(np.linalg.norm(box[0] - box[3]))
- if rect_width <= 3 or rect_height <= 3:
- continue
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- if type(box) is list:
- box = np.array(box)
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def __call__(self, img, cls=True):
- ori_im = img.copy()
- data = {'image': img}
- st = time.time()
- if self.args.benchmark:
- self.autolog.times.start()
- data = transform(data, self.preprocess_op)
- img, shape_list = data
- if img is None:
- return None, 0
- img = np.expand_dims(img, axis=0)
- shape_list = np.expand_dims(shape_list, axis=0)
- img = img.copy()
- if self.args.benchmark:
- self.autolog.times.stamp()
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = img
- outputs = self.predictor.run(self.output_tensors, input_dict)
- else:
- self.input_tensor.copy_from_cpu(img)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if self.args.benchmark:
- self.autolog.times.stamp()
- preds = {}
- if self.det_algorithm == "EAST":
- preds['f_geo'] = outputs[0]
- preds['f_score'] = outputs[1]
- elif self.det_algorithm == 'SAST':
- preds['f_border'] = outputs[0]
- preds['f_score'] = outputs[1]
- preds['f_tco'] = outputs[2]
- preds['f_tvo'] = outputs[3]
- elif self.det_algorithm in ['DB', 'PSE', 'DB++']:
- preds['maps'] = outputs[0]
- elif self.det_algorithm == 'FCE':
- for i, output in enumerate(outputs):
- preds['level_{}'.format(i)] = output
- elif self.det_algorithm == "CT":
- preds['maps'] = outputs[0]
- preds['score'] = outputs[1]
- else:
- raise NotImplementedError
- post_result = self.postprocess_op(preds, shape_list)
- dt_boxes = post_result[0]['points']
- if self.args.det_box_type == 'poly':
- dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
- else:
- dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
- if self.args.benchmark:
- self.autolog.times.end(stamp=True)
- et = time.time()
- return dt_boxes, et - st
- if __name__ == "__main__":
- args = utility.parse_args()
- image_file_list = get_image_file_list(args.image_dir)
- text_detector = TextDetector(args)
- total_time = 0
- draw_img_save_dir = args.draw_img_save_dir
- os.makedirs(draw_img_save_dir, exist_ok=True)
- if args.warmup:
- img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
- for i in range(2):
- res = text_detector(img)
- save_results = []
- for idx, image_file in enumerate(image_file_list):
- img, flag_gif, flag_pdf = check_and_read(image_file)
- if not flag_gif and not flag_pdf:
- img = cv2.imread(image_file)
- if not flag_pdf:
- if img is None:
- logger.debug("error in loading image:{}".format(image_file))
- continue
- imgs = [img]
- else:
- page_num = args.page_num
- if page_num > len(img) or page_num == 0:
- page_num = len(img)
- imgs = img[:page_num]
- for index, img in enumerate(imgs):
- st = time.time()
- dt_boxes, _ = text_detector(img)
- elapse = time.time() - st
- total_time += elapse
- if len(imgs) > 1:
- save_pred = os.path.basename(image_file) + '_' + str(
- index) + "\t" + str(
- json.dumps([x.tolist() for x in dt_boxes])) + "\n"
- else:
- save_pred = os.path.basename(image_file) + "\t" + str(
- json.dumps([x.tolist() for x in dt_boxes])) + "\n"
- save_results.append(save_pred)
- logger.info(save_pred)
- if len(imgs) > 1:
- logger.info("{}_{} The predict time of {}: {}".format(
- idx, index, image_file, elapse))
- else:
- logger.info("{} The predict time of {}: {}".format(
- idx, image_file, elapse))
- src_im = utility.draw_text_det_res(dt_boxes, img)
- if flag_gif:
- save_file = image_file[:-3] + "png"
- elif flag_pdf:
- save_file = image_file.replace('.pdf',
- '_' + str(index) + '.png')
- else:
- save_file = image_file
- img_path = os.path.join(
- draw_img_save_dir,
- "det_res_{}".format(os.path.basename(save_file)))
- cv2.imwrite(img_path, src_im)
- logger.info("The visualized image saved in {}".format(img_path))
- with open(os.path.join(draw_img_save_dir, "det_results.txt"), 'w') as f:
- f.writelines(save_results)
- f.close()
- if args.benchmark:
- text_detector.autolog.report()
|