train_infer_python.txt 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. ===========================train_params===========================
  2. model_name:en_server_pgnetA
  3. python:python3.7
  4. gpu_list:0|0,1
  5. Global.use_gpu:True|True
  6. Global.auto_cast:null
  7. Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=500
  8. Global.save_model_dir:./output/
  9. Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=14
  10. Global.pretrained_model:null
  11. train_model_name:latest
  12. train_infer_img_dir:./train_data/total_text/test/rgb/
  13. null:null
  14. ##
  15. trainer:norm_train
  16. norm_train:tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/en_server_pgnetA/best_accuracy
  17. pact_train:null
  18. fpgm_train:null
  19. distill_train:null
  20. null:null
  21. null:null
  22. ##
  23. ===========================eval_params===========================
  24. eval:null
  25. null:null
  26. ##
  27. ===========================infer_params===========================
  28. Global.save_inference_dir:./output/
  29. Global.checkpoints:
  30. norm_export:tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o
  31. quant_export:null
  32. fpgm_export:null
  33. distill_export:null
  34. export1:null
  35. export2:null
  36. inference_dir:null
  37. train_model:./inference/en_server_pgnetA/best_accuracy
  38. infer_export:tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o
  39. infer_quant:False
  40. inference:tools/infer/predict_e2e.py
  41. --use_gpu:True|False
  42. --enable_mkldnn:False
  43. --cpu_threads:6
  44. --rec_batch_num:1
  45. --use_tensorrt:False
  46. --precision:fp32
  47. --e2e_model_dir:
  48. --image_dir:./inference/ch_det_data_50/all-sum-510/
  49. null:null
  50. --benchmark:True
  51. null:null
  52. ===========================infer_benchmark_params==========================
  53. random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}]