123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import json
- import numpy as np
- import time
- import tools.infer.utility as utility
- from ppocr.data import create_operators, transform
- from ppocr.postprocess import build_post_process
- from ppocr.utils.logging import get_logger
- from ppocr.utils.visual import draw_ser_results
- from ppocr.utils.utility import get_image_file_list, check_and_read
- from ppstructure.utility import parse_args
- from paddleocr import PaddleOCR
- logger = get_logger()
- class SerPredictor(object):
- def __init__(self, args):
- self.ocr_engine = PaddleOCR(
- use_angle_cls=args.use_angle_cls,
- det_model_dir=args.det_model_dir,
- rec_model_dir=args.rec_model_dir,
- show_log=False,
- use_gpu=args.use_gpu)
- pre_process_list = [{
- 'VQATokenLabelEncode': {
- 'algorithm': args.kie_algorithm,
- 'class_path': args.ser_dict_path,
- 'contains_re': False,
- 'ocr_engine': self.ocr_engine,
- 'order_method': args.ocr_order_method,
- }
- }, {
- 'VQATokenPad': {
- 'max_seq_len': 512,
- 'return_attention_mask': True
- }
- }, {
- 'VQASerTokenChunk': {
- 'max_seq_len': 512,
- 'return_attention_mask': True
- }
- }, {
- 'Resize': {
- 'size': [224, 224]
- }
- }, {
- 'NormalizeImage': {
- 'std': [58.395, 57.12, 57.375],
- 'mean': [123.675, 116.28, 103.53],
- 'scale': '1',
- 'order': 'hwc'
- }
- }, {
- 'ToCHWImage': None
- }, {
- 'KeepKeys': {
- 'keep_keys': [
- 'input_ids', 'bbox', 'attention_mask', 'token_type_ids',
- 'image', 'labels', 'segment_offset_id', 'ocr_info',
- 'entities'
- ]
- }
- }]
- postprocess_params = {
- 'name': 'VQASerTokenLayoutLMPostProcess',
- "class_path": args.ser_dict_path,
- }
- self.preprocess_op = create_operators(pre_process_list,
- {'infer_mode': True})
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- utility.create_predictor(args, 'ser', logger)
- def __call__(self, img):
- ori_im = img.copy()
- data = {'image': img}
- data = transform(data, self.preprocess_op)
- if data[0] is None:
- return None, 0
- starttime = time.time()
- for idx in range(len(data)):
- if isinstance(data[idx], np.ndarray):
- data[idx] = np.expand_dims(data[idx], axis=0)
- else:
- data[idx] = [data[idx]]
- for idx in range(len(self.input_tensor)):
- self.input_tensor[idx].copy_from_cpu(data[idx])
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = outputs[0]
- post_result = self.postprocess_op(
- preds, segment_offset_ids=data[6], ocr_infos=data[7])
- elapse = time.time() - starttime
- return post_result, data, elapse
- def main(args):
- image_file_list = get_image_file_list(args.image_dir)
- ser_predictor = SerPredictor(args)
- count = 0
- total_time = 0
- os.makedirs(args.output, exist_ok=True)
- with open(
- os.path.join(args.output, 'infer.txt'), mode='w',
- encoding='utf-8') as f_w:
- for image_file in image_file_list:
- img, flag, _ = check_and_read(image_file)
- if not flag:
- img = cv2.imread(image_file)
- img = img[:, :, ::-1]
- if img is None:
- logger.info("error in loading image:{}".format(image_file))
- continue
- ser_res, _, elapse = ser_predictor(img)
- ser_res = ser_res[0]
- res_str = '{}\t{}\n'.format(
- image_file,
- json.dumps(
- {
- "ocr_info": ser_res,
- }, ensure_ascii=False))
- f_w.write(res_str)
- img_res = draw_ser_results(
- image_file,
- ser_res,
- font_path=args.vis_font_path, )
- img_save_path = os.path.join(args.output,
- os.path.basename(image_file))
- cv2.imwrite(img_save_path, img_res)
- logger.info("save vis result to {}".format(img_save_path))
- if count > 0:
- total_time += elapse
- count += 1
- logger.info("Predict time of {}: {}".format(image_file, elapse))
- if __name__ == "__main__":
- main(parse_args())
|