123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/tps_spatial_transformer.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn, ParamAttr
- from paddle.nn import functional as F
- import numpy as np
- import itertools
- def grid_sample(input, grid, canvas=None):
- input.stop_gradient = False
- output = F.grid_sample(input, grid)
- if canvas is None:
- return output
- else:
- input_mask = paddle.ones(shape=input.shape)
- output_mask = F.grid_sample(input_mask, grid)
- padded_output = output * output_mask + canvas * (1 - output_mask)
- return padded_output
- # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
- def compute_partial_repr(input_points, control_points):
- N = input_points.shape[0]
- M = control_points.shape[0]
- pairwise_diff = paddle.reshape(
- input_points, shape=[N, 1, 2]) - paddle.reshape(
- control_points, shape=[1, M, 2])
- # original implementation, very slow
- # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
- pairwise_diff_square = pairwise_diff * pairwise_diff
- pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
- 1]
- repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
- # fix numerical error for 0 * log(0), substitute all nan with 0
- mask = np.array(repr_matrix != repr_matrix)
- repr_matrix[mask] = 0
- return repr_matrix
- # output_ctrl_pts are specified, according to our task.
- def build_output_control_points(num_control_points, margins):
- margin_x, margin_y = margins
- num_ctrl_pts_per_side = num_control_points // 2
- ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
- ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
- ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
- output_ctrl_pts_arr = np.concatenate(
- [ctrl_pts_top, ctrl_pts_bottom], axis=0)
- output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
- return output_ctrl_pts
- class TPSSpatialTransformer(nn.Layer):
- def __init__(self,
- output_image_size=None,
- num_control_points=None,
- margins=None):
- super(TPSSpatialTransformer, self).__init__()
- self.output_image_size = output_image_size
- self.num_control_points = num_control_points
- self.margins = margins
- self.target_height, self.target_width = output_image_size
- target_control_points = build_output_control_points(num_control_points,
- margins)
- N = num_control_points
- # create padded kernel matrix
- forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
- target_control_partial_repr = compute_partial_repr(
- target_control_points, target_control_points)
- target_control_partial_repr = paddle.cast(target_control_partial_repr,
- forward_kernel.dtype)
- forward_kernel[:N, :N] = target_control_partial_repr
- forward_kernel[:N, -3] = 1
- forward_kernel[-3, :N] = 1
- target_control_points = paddle.cast(target_control_points,
- forward_kernel.dtype)
- forward_kernel[:N, -2:] = target_control_points
- forward_kernel[-2:, :N] = paddle.transpose(
- target_control_points, perm=[1, 0])
- # compute inverse matrix
- inverse_kernel = paddle.inverse(forward_kernel)
- # create target cordinate matrix
- HW = self.target_height * self.target_width
- target_coordinate = list(
- itertools.product(
- range(self.target_height), range(self.target_width)))
- target_coordinate = paddle.to_tensor(target_coordinate) # HW x 2
- Y, X = paddle.split(
- target_coordinate, target_coordinate.shape[1], axis=1)
- Y = Y / (self.target_height - 1)
- X = X / (self.target_width - 1)
- target_coordinate = paddle.concat(
- [X, Y], axis=1) # convert from (y, x) to (x, y)
- target_coordinate_partial_repr = compute_partial_repr(
- target_coordinate, target_control_points)
- target_coordinate_repr = paddle.concat(
- [
- target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
- target_coordinate
- ],
- axis=1)
- # register precomputed matrices
- self.inverse_kernel = inverse_kernel
- self.padding_matrix = paddle.zeros(shape=[3, 2])
- self.target_coordinate_repr = target_coordinate_repr
- self.target_control_points = target_control_points
- def forward(self, input, source_control_points):
- assert source_control_points.ndimension() == 3
- assert source_control_points.shape[1] == self.num_control_points
- assert source_control_points.shape[2] == 2
- batch_size = paddle.shape(source_control_points)[0]
- padding_matrix = paddle.expand(
- self.padding_matrix, shape=[batch_size, 3, 2])
- Y = paddle.concat([source_control_points, padding_matrix], 1)
- mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
- source_coordinate = paddle.matmul(self.target_coordinate_repr,
- mapping_matrix)
- grid = paddle.reshape(
- source_coordinate,
- shape=[-1, self.target_height, self.target_width, 2])
- grid = paddle.clip(grid, 0,
- 1) # the source_control_points may be out of [0, 1].
- # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
- grid = 2.0 * grid - 1.0
- output_maps = grid_sample(input, grid, canvas=None)
- return output_maps, source_coordinate
|