123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- is_vd_mode=False,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- self.is_vd_mode = is_vd_mode
- self._pool2d_avg = nn.AvgPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True)
- self._conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False)
- if name == "conv1":
- bn_name = "bn_" + name
- else:
- bn_name = "bn" + name[3:]
- self._batch_norm = nn.BatchNorm(
- out_channels,
- act=act,
- param_attr=ParamAttr(name=bn_name + '_scale'),
- bias_attr=ParamAttr(bn_name + '_offset'),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance',
- use_global_stats=False)
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- return y
- class DeConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=4,
- stride=2,
- padding=1,
- groups=1,
- if_act=True,
- act=None,
- name=None):
- super(DeConvBNLayer, self).__init__()
- self.if_act = if_act
- self.act = act
- self.deconv = nn.Conv2DTranspose(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- weight_attr=ParamAttr(name=name + '_weights'),
- bias_attr=False)
- self.bn = nn.BatchNorm(
- num_channels=out_channels,
- act=act,
- param_attr=ParamAttr(name="bn_" + name + "_scale"),
- bias_attr=ParamAttr(name="bn_" + name + "_offset"),
- moving_mean_name="bn_" + name + "_mean",
- moving_variance_name="bn_" + name + "_variance",
- use_global_stats=False)
- def forward(self, x):
- x = self.deconv(x)
- x = self.bn(x)
- return x
- class PGFPN(nn.Layer):
- def __init__(self, in_channels, **kwargs):
- super(PGFPN, self).__init__()
- num_inputs = [2048, 2048, 1024, 512, 256]
- num_outputs = [256, 256, 192, 192, 128]
- self.out_channels = 128
- self.conv_bn_layer_1 = ConvBNLayer(
- in_channels=3,
- out_channels=32,
- kernel_size=3,
- stride=1,
- act=None,
- name='FPN_d1')
- self.conv_bn_layer_2 = ConvBNLayer(
- in_channels=64,
- out_channels=64,
- kernel_size=3,
- stride=1,
- act=None,
- name='FPN_d2')
- self.conv_bn_layer_3 = ConvBNLayer(
- in_channels=256,
- out_channels=128,
- kernel_size=3,
- stride=1,
- act=None,
- name='FPN_d3')
- self.conv_bn_layer_4 = ConvBNLayer(
- in_channels=32,
- out_channels=64,
- kernel_size=3,
- stride=2,
- act=None,
- name='FPN_d4')
- self.conv_bn_layer_5 = ConvBNLayer(
- in_channels=64,
- out_channels=64,
- kernel_size=3,
- stride=1,
- act='relu',
- name='FPN_d5')
- self.conv_bn_layer_6 = ConvBNLayer(
- in_channels=64,
- out_channels=128,
- kernel_size=3,
- stride=2,
- act=None,
- name='FPN_d6')
- self.conv_bn_layer_7 = ConvBNLayer(
- in_channels=128,
- out_channels=128,
- kernel_size=3,
- stride=1,
- act='relu',
- name='FPN_d7')
- self.conv_bn_layer_8 = ConvBNLayer(
- in_channels=128,
- out_channels=128,
- kernel_size=1,
- stride=1,
- act=None,
- name='FPN_d8')
- self.conv_h0 = ConvBNLayer(
- in_channels=num_inputs[0],
- out_channels=num_outputs[0],
- kernel_size=1,
- stride=1,
- act=None,
- name="conv_h{}".format(0))
- self.conv_h1 = ConvBNLayer(
- in_channels=num_inputs[1],
- out_channels=num_outputs[1],
- kernel_size=1,
- stride=1,
- act=None,
- name="conv_h{}".format(1))
- self.conv_h2 = ConvBNLayer(
- in_channels=num_inputs[2],
- out_channels=num_outputs[2],
- kernel_size=1,
- stride=1,
- act=None,
- name="conv_h{}".format(2))
- self.conv_h3 = ConvBNLayer(
- in_channels=num_inputs[3],
- out_channels=num_outputs[3],
- kernel_size=1,
- stride=1,
- act=None,
- name="conv_h{}".format(3))
- self.conv_h4 = ConvBNLayer(
- in_channels=num_inputs[4],
- out_channels=num_outputs[4],
- kernel_size=1,
- stride=1,
- act=None,
- name="conv_h{}".format(4))
- self.dconv0 = DeConvBNLayer(
- in_channels=num_outputs[0],
- out_channels=num_outputs[0 + 1],
- name="dconv_{}".format(0))
- self.dconv1 = DeConvBNLayer(
- in_channels=num_outputs[1],
- out_channels=num_outputs[1 + 1],
- act=None,
- name="dconv_{}".format(1))
- self.dconv2 = DeConvBNLayer(
- in_channels=num_outputs[2],
- out_channels=num_outputs[2 + 1],
- act=None,
- name="dconv_{}".format(2))
- self.dconv3 = DeConvBNLayer(
- in_channels=num_outputs[3],
- out_channels=num_outputs[3 + 1],
- act=None,
- name="dconv_{}".format(3))
- self.conv_g1 = ConvBNLayer(
- in_channels=num_outputs[1],
- out_channels=num_outputs[1],
- kernel_size=3,
- stride=1,
- act='relu',
- name="conv_g{}".format(1))
- self.conv_g2 = ConvBNLayer(
- in_channels=num_outputs[2],
- out_channels=num_outputs[2],
- kernel_size=3,
- stride=1,
- act='relu',
- name="conv_g{}".format(2))
- self.conv_g3 = ConvBNLayer(
- in_channels=num_outputs[3],
- out_channels=num_outputs[3],
- kernel_size=3,
- stride=1,
- act='relu',
- name="conv_g{}".format(3))
- self.conv_g4 = ConvBNLayer(
- in_channels=num_outputs[4],
- out_channels=num_outputs[4],
- kernel_size=3,
- stride=1,
- act='relu',
- name="conv_g{}".format(4))
- self.convf = ConvBNLayer(
- in_channels=num_outputs[4],
- out_channels=num_outputs[4],
- kernel_size=1,
- stride=1,
- act=None,
- name="conv_f{}".format(4))
- def forward(self, x):
- c0, c1, c2, c3, c4, c5, c6 = x
- # FPN_Down_Fusion
- f = [c0, c1, c2]
- g = [None, None, None]
- h = [None, None, None]
- h[0] = self.conv_bn_layer_1(f[0])
- h[1] = self.conv_bn_layer_2(f[1])
- h[2] = self.conv_bn_layer_3(f[2])
- g[0] = self.conv_bn_layer_4(h[0])
- g[1] = paddle.add(g[0], h[1])
- g[1] = F.relu(g[1])
- g[1] = self.conv_bn_layer_5(g[1])
- g[1] = self.conv_bn_layer_6(g[1])
- g[2] = paddle.add(g[1], h[2])
- g[2] = F.relu(g[2])
- g[2] = self.conv_bn_layer_7(g[2])
- f_down = self.conv_bn_layer_8(g[2])
- # FPN UP Fusion
- f1 = [c6, c5, c4, c3, c2]
- g = [None, None, None, None, None]
- h = [None, None, None, None, None]
- h[0] = self.conv_h0(f1[0])
- h[1] = self.conv_h1(f1[1])
- h[2] = self.conv_h2(f1[2])
- h[3] = self.conv_h3(f1[3])
- h[4] = self.conv_h4(f1[4])
- g[0] = self.dconv0(h[0])
- g[1] = paddle.add(g[0], h[1])
- g[1] = F.relu(g[1])
- g[1] = self.conv_g1(g[1])
- g[1] = self.dconv1(g[1])
- g[2] = paddle.add(g[1], h[2])
- g[2] = F.relu(g[2])
- g[2] = self.conv_g2(g[2])
- g[2] = self.dconv2(g[2])
- g[3] = paddle.add(g[2], h[3])
- g[3] = F.relu(g[3])
- g[3] = self.conv_g3(g[3])
- g[3] = self.dconv3(g[3])
- g[4] = paddle.add(x=g[3], y=h[4])
- g[4] = F.relu(g[4])
- g[4] = self.conv_g4(g[4])
- f_up = self.convf(g[4])
- f_common = paddle.add(f_down, f_up)
- f_common = F.relu(f_common)
- return f_common
|