123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/heads/sdmgr_head.py
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- class SDMGRHead(nn.Layer):
- def __init__(self,
- in_channels,
- num_chars=92,
- visual_dim=16,
- fusion_dim=1024,
- node_input=32,
- node_embed=256,
- edge_input=5,
- edge_embed=256,
- num_gnn=2,
- num_classes=26,
- bidirectional=False):
- super().__init__()
- self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
- self.node_embed = nn.Embedding(num_chars, node_input, 0)
- hidden = node_embed // 2 if bidirectional else node_embed
- self.rnn = nn.LSTM(
- input_size=node_input, hidden_size=hidden, num_layers=1)
- self.edge_embed = nn.Linear(edge_input, edge_embed)
- self.gnn_layers = nn.LayerList(
- [GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
- self.node_cls = nn.Linear(node_embed, num_classes)
- self.edge_cls = nn.Linear(edge_embed, 2)
- def forward(self, input, targets):
- relations, texts, x = input
- node_nums, char_nums = [], []
- for text in texts:
- node_nums.append(text.shape[0])
- char_nums.append(paddle.sum((text > -1).astype(int), axis=-1))
- max_num = max([char_num.max() for char_num in char_nums])
- all_nodes = paddle.concat([
- paddle.concat(
- [text, paddle.zeros(
- (text.shape[0], max_num - text.shape[1]))], -1)
- for text in texts
- ])
- temp = paddle.clip(all_nodes, min=0).astype(int)
- embed_nodes = self.node_embed(temp)
- rnn_nodes, _ = self.rnn(embed_nodes)
- b, h, w = rnn_nodes.shape
- nodes = paddle.zeros([b, w])
- all_nums = paddle.concat(char_nums)
- valid = paddle.nonzero((all_nums > 0).astype(int))
- temp_all_nums = (
- paddle.gather(all_nums, valid) - 1).unsqueeze(-1).unsqueeze(-1)
- temp_all_nums = paddle.expand(temp_all_nums, [
- temp_all_nums.shape[0], temp_all_nums.shape[1], rnn_nodes.shape[-1]
- ])
- temp_all_nodes = paddle.gather(rnn_nodes, valid)
- N, C, A = temp_all_nodes.shape
- one_hot = F.one_hot(
- temp_all_nums[:, 0, :], num_classes=C).transpose([0, 2, 1])
- one_hot = paddle.multiply(
- temp_all_nodes, one_hot.astype("float32")).sum(axis=1, keepdim=True)
- t = one_hot.expand([N, 1, A]).squeeze(1)
- nodes = paddle.scatter(nodes, valid.squeeze(1), t)
- if x is not None:
- nodes = self.fusion([x, nodes])
- all_edges = paddle.concat(
- [rel.reshape([-1, rel.shape[-1]]) for rel in relations])
- embed_edges = self.edge_embed(all_edges.astype('float32'))
- embed_edges = F.normalize(embed_edges)
- for gnn_layer in self.gnn_layers:
- nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)
- node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
- return node_cls, edge_cls
- class GNNLayer(nn.Layer):
- def __init__(self, node_dim=256, edge_dim=256):
- super().__init__()
- self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
- self.coef_fc = nn.Linear(node_dim, 1)
- self.out_fc = nn.Linear(node_dim, node_dim)
- self.relu = nn.ReLU()
- def forward(self, nodes, edges, nums):
- start, cat_nodes = 0, []
- for num in nums:
- sample_nodes = nodes[start:start + num]
- cat_nodes.append(
- paddle.concat([
- paddle.expand(sample_nodes.unsqueeze(1), [-1, num, -1]),
- paddle.expand(sample_nodes.unsqueeze(0), [num, -1, -1])
- ], -1).reshape([num**2, -1]))
- start += num
- cat_nodes = paddle.concat([paddle.concat(cat_nodes), edges], -1)
- cat_nodes = self.relu(self.in_fc(cat_nodes))
- coefs = self.coef_fc(cat_nodes)
- start, residuals = 0, []
- for num in nums:
- residual = F.softmax(
- -paddle.eye(num).unsqueeze(-1) * 1e9 +
- coefs[start:start + num**2].reshape([num, num, -1]), 1)
- residuals.append((residual * cat_nodes[start:start + num**2]
- .reshape([num, num, -1])).sum(1))
- start += num**2
- nodes += self.relu(self.out_fc(paddle.concat(residuals)))
- return [nodes, cat_nodes]
- class Block(nn.Layer):
- def __init__(self,
- input_dims,
- output_dim,
- mm_dim=1600,
- chunks=20,
- rank=15,
- shared=False,
- dropout_input=0.,
- dropout_pre_lin=0.,
- dropout_output=0.,
- pos_norm='before_cat'):
- super().__init__()
- self.rank = rank
- self.dropout_input = dropout_input
- self.dropout_pre_lin = dropout_pre_lin
- self.dropout_output = dropout_output
- assert (pos_norm in ['before_cat', 'after_cat'])
- self.pos_norm = pos_norm
- # Modules
- self.linear0 = nn.Linear(input_dims[0], mm_dim)
- self.linear1 = (self.linear0
- if shared else nn.Linear(input_dims[1], mm_dim))
- self.merge_linears0 = nn.LayerList()
- self.merge_linears1 = nn.LayerList()
- self.chunks = self.chunk_sizes(mm_dim, chunks)
- for size in self.chunks:
- ml0 = nn.Linear(size, size * rank)
- self.merge_linears0.append(ml0)
- ml1 = ml0 if shared else nn.Linear(size, size * rank)
- self.merge_linears1.append(ml1)
- self.linear_out = nn.Linear(mm_dim, output_dim)
- def forward(self, x):
- x0 = self.linear0(x[0])
- x1 = self.linear1(x[1])
- bs = x1.shape[0]
- if self.dropout_input > 0:
- x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
- x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
- x0_chunks = paddle.split(x0, self.chunks, -1)
- x1_chunks = paddle.split(x1, self.chunks, -1)
- zs = []
- for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, self.merge_linears0,
- self.merge_linears1):
- m = m0(x0_c) * m1(x1_c) # bs x split_size*rank
- m = m.reshape([bs, self.rank, -1])
- z = paddle.sum(m, 1)
- if self.pos_norm == 'before_cat':
- z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
- z = F.normalize(z)
- zs.append(z)
- z = paddle.concat(zs, 1)
- if self.pos_norm == 'after_cat':
- z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
- z = F.normalize(z)
- if self.dropout_pre_lin > 0:
- z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
- z = self.linear_out(z)
- if self.dropout_output > 0:
- z = F.dropout(z, p=self.dropout_output, training=self.training)
- return z
- def chunk_sizes(self, dim, chunks):
- split_size = (dim + chunks - 1) // chunks
- sizes_list = [split_size] * chunks
- sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
- return sizes_list
|