123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/roatienza/deep-text-recognition-benchmark/blob/master/modules/vitstr.py
- """
- import numpy as np
- import paddle
- import paddle.nn as nn
- from ppocr.modeling.backbones.rec_svtrnet import Block, PatchEmbed, zeros_, trunc_normal_, ones_
- scale_dim_heads = {'tiny': [192, 3], 'small': [384, 6], 'base': [768, 12]}
- class ViTSTR(nn.Layer):
- def __init__(self,
- img_size=[224, 224],
- in_channels=1,
- scale='tiny',
- seqlen=27,
- patch_size=[16, 16],
- embed_dim=None,
- depth=12,
- num_heads=None,
- mlp_ratio=4,
- qkv_bias=True,
- qk_scale=None,
- drop_path_rate=0.,
- drop_rate=0.,
- attn_drop_rate=0.,
- norm_layer='nn.LayerNorm',
- act_layer='nn.GELU',
- epsilon=1e-6,
- out_channels=None,
- **kwargs):
- super().__init__()
- self.seqlen = seqlen
- embed_dim = embed_dim if embed_dim is not None else scale_dim_heads[
- scale][0]
- num_heads = num_heads if num_heads is not None else scale_dim_heads[
- scale][1]
- out_channels = out_channels if out_channels is not None else embed_dim
- self.patch_embed = PatchEmbed(
- img_size=img_size,
- in_channels=in_channels,
- embed_dim=embed_dim,
- patch_size=patch_size,
- mode='linear')
- num_patches = self.patch_embed.num_patches
- self.pos_embed = self.create_parameter(
- shape=[1, num_patches + 1, embed_dim], default_initializer=zeros_)
- self.add_parameter("pos_embed", self.pos_embed)
- self.cls_token = self.create_parameter(
- shape=[1, 1, embed_dim], default_initializer=zeros_)
- self.add_parameter("cls_token", self.cls_token)
- self.pos_drop = nn.Dropout(p=drop_rate)
- dpr = np.linspace(0, drop_path_rate, depth)
- self.blocks = nn.LayerList([
- Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[i],
- norm_layer=norm_layer,
- act_layer=eval(act_layer),
- epsilon=epsilon,
- prenorm=False) for i in range(depth)
- ])
- self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
- self.out_channels = out_channels
- trunc_normal_(self.pos_embed)
- trunc_normal_(self.cls_token)
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight)
- if isinstance(m, nn.Linear) and m.bias is not None:
- zeros_(m.bias)
- elif isinstance(m, nn.LayerNorm):
- zeros_(m.bias)
- ones_(m.weight)
- def forward_features(self, x):
- B = x.shape[0]
- x = self.patch_embed(x)
- cls_tokens = paddle.tile(self.cls_token, repeat_times=[B, 1, 1])
- x = paddle.concat((cls_tokens, x), axis=1)
- x = x + self.pos_embed
- x = self.pos_drop(x)
- for blk in self.blocks:
- x = blk(x)
- x = self.norm(x)
- return x
- def forward(self, x):
- x = self.forward_features(x)
- x = x[:, :self.seqlen]
- return x.transpose([0, 2, 1]).unsqueeze(2)
|