123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn, ParamAttr
- from paddle.nn import functional as F
- import paddle
- import numpy as np
- __all__ = ["ResNetFPN"]
- class ResNetFPN(nn.Layer):
- def __init__(self, in_channels=1, layers=50, **kwargs):
- super(ResNetFPN, self).__init__()
- supported_layers = {
- 18: {
- 'depth': [2, 2, 2, 2],
- 'block_class': BasicBlock
- },
- 34: {
- 'depth': [3, 4, 6, 3],
- 'block_class': BasicBlock
- },
- 50: {
- 'depth': [3, 4, 6, 3],
- 'block_class': BottleneckBlock
- },
- 101: {
- 'depth': [3, 4, 23, 3],
- 'block_class': BottleneckBlock
- },
- 152: {
- 'depth': [3, 8, 36, 3],
- 'block_class': BottleneckBlock
- }
- }
- stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
- num_filters = [64, 128, 256, 512]
- self.depth = supported_layers[layers]['depth']
- self.F = []
- self.conv = ConvBNLayer(
- in_channels=in_channels,
- out_channels=64,
- kernel_size=7,
- stride=2,
- act="relu",
- name="conv1")
- self.block_list = []
- in_ch = 64
- if layers >= 50:
- for block in range(len(self.depth)):
- for i in range(self.depth[block]):
- if layers in [101, 152] and block == 2:
- if i == 0:
- conv_name = "res" + str(block + 2) + "a"
- else:
- conv_name = "res" + str(block + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block + 2) + chr(97 + i)
- block_list = self.add_sublayer(
- "bottleneckBlock_{}_{}".format(block, i),
- BottleneckBlock(
- in_channels=in_ch,
- out_channels=num_filters[block],
- stride=stride_list[block] if i == 0 else 1,
- name=conv_name))
- in_ch = num_filters[block] * 4
- self.block_list.append(block_list)
- self.F.append(block_list)
- else:
- for block in range(len(self.depth)):
- for i in range(self.depth[block]):
- conv_name = "res" + str(block + 2) + chr(97 + i)
- if i == 0 and block != 0:
- stride = (2, 1)
- else:
- stride = (1, 1)
- basic_block = self.add_sublayer(
- conv_name,
- BasicBlock(
- in_channels=in_ch,
- out_channels=num_filters[block],
- stride=stride_list[block] if i == 0 else 1,
- is_first=block == i == 0,
- name=conv_name))
- in_ch = basic_block.out_channels
- self.block_list.append(basic_block)
- out_ch_list = [in_ch // 4, in_ch // 2, in_ch]
- self.base_block = []
- self.conv_trans = []
- self.bn_block = []
- for i in [-2, -3]:
- in_channels = out_ch_list[i + 1] + out_ch_list[i]
- self.base_block.append(
- self.add_sublayer(
- "F_{}_base_block_0".format(i),
- nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_ch_list[i],
- kernel_size=1,
- weight_attr=ParamAttr(trainable=True),
- bias_attr=ParamAttr(trainable=True))))
- self.base_block.append(
- self.add_sublayer(
- "F_{}_base_block_1".format(i),
- nn.Conv2D(
- in_channels=out_ch_list[i],
- out_channels=out_ch_list[i],
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(trainable=True),
- bias_attr=ParamAttr(trainable=True))))
- self.base_block.append(
- self.add_sublayer(
- "F_{}_base_block_2".format(i),
- nn.BatchNorm(
- num_channels=out_ch_list[i],
- act="relu",
- param_attr=ParamAttr(trainable=True),
- bias_attr=ParamAttr(trainable=True))))
- self.base_block.append(
- self.add_sublayer(
- "F_{}_base_block_3".format(i),
- nn.Conv2D(
- in_channels=out_ch_list[i],
- out_channels=512,
- kernel_size=1,
- bias_attr=ParamAttr(trainable=True),
- weight_attr=ParamAttr(trainable=True))))
- self.out_channels = 512
- def __call__(self, x):
- x = self.conv(x)
- fpn_list = []
- F = []
- for i in range(len(self.depth)):
- fpn_list.append(np.sum(self.depth[:i + 1]))
- for i, block in enumerate(self.block_list):
- x = block(x)
- for number in fpn_list:
- if i + 1 == number:
- F.append(x)
- base = F[-1]
- j = 0
- for i, block in enumerate(self.base_block):
- if i % 3 == 0 and i < 6:
- j = j + 1
- b, c, w, h = F[-j - 1].shape
- if [w, h] == list(base.shape[2:]):
- base = base
- else:
- base = self.conv_trans[j - 1](base)
- base = self.bn_block[j - 1](base)
- base = paddle.concat([base, F[-j - 1]], axis=1)
- base = block(base)
- return base
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- groups=1,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- self.conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=2 if stride == (1, 1) else kernel_size,
- dilation=2 if stride == (1, 1) else 1,
- stride=stride,
- padding=(kernel_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'),
- bias_attr=False, )
- if name == "conv1":
- bn_name = "bn_" + name
- else:
- bn_name = "bn" + name[3:]
- self.bn = nn.BatchNorm(
- num_channels=out_channels,
- act=act,
- param_attr=ParamAttr(name=name + '.output.1.w_0'),
- bias_attr=ParamAttr(name=name + '.output.1.b_0'),
- moving_mean_name=bn_name + "_mean",
- moving_variance_name=bn_name + "_variance")
- def __call__(self, x):
- x = self.conv(x)
- x = self.bn(x)
- return x
- class ShortCut(nn.Layer):
- def __init__(self, in_channels, out_channels, stride, name, is_first=False):
- super(ShortCut, self).__init__()
- self.use_conv = True
- if in_channels != out_channels or stride != 1 or is_first == True:
- if stride == (1, 1):
- self.conv = ConvBNLayer(
- in_channels, out_channels, 1, 1, name=name)
- else: # stride==(2,2)
- self.conv = ConvBNLayer(
- in_channels, out_channels, 1, stride, name=name)
- else:
- self.use_conv = False
- def forward(self, x):
- if self.use_conv:
- x = self.conv(x)
- return x
- class BottleneckBlock(nn.Layer):
- def __init__(self, in_channels, out_channels, stride, name):
- super(BottleneckBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- act='relu',
- name=name + "_branch2a")
- self.conv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- stride=stride,
- act='relu',
- name=name + "_branch2b")
- self.conv2 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels * 4,
- kernel_size=1,
- act=None,
- name=name + "_branch2c")
- self.short = ShortCut(
- in_channels=in_channels,
- out_channels=out_channels * 4,
- stride=stride,
- is_first=False,
- name=name + "_branch1")
- self.out_channels = out_channels * 4
- def forward(self, x):
- y = self.conv0(x)
- y = self.conv1(y)
- y = self.conv2(y)
- y = y + self.short(x)
- y = F.relu(y)
- return y
- class BasicBlock(nn.Layer):
- def __init__(self, in_channels, out_channels, stride, name, is_first):
- super(BasicBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- act='relu',
- stride=stride,
- name=name + "_branch2a")
- self.conv1 = ConvBNLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- act=None,
- name=name + "_branch2b")
- self.short = ShortCut(
- in_channels=in_channels,
- out_channels=out_channels,
- stride=stride,
- is_first=is_first,
- name=name + "_branch1")
- self.out_channels = out_channels
- def forward(self, x):
- y = self.conv0(x)
- y = self.conv1(y)
- y = y + self.short(x)
- return F.relu(y)
|