12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from paddle import nn
- from ppocr.losses.basic_loss import DMLLoss
- class VQASerTokenLayoutLMLoss(nn.Layer):
- def __init__(self, num_classes, key=None):
- super().__init__()
- self.loss_class = nn.CrossEntropyLoss()
- self.num_classes = num_classes
- self.ignore_index = self.loss_class.ignore_index
- self.key = key
- def forward(self, predicts, batch):
- if isinstance(predicts, dict) and self.key is not None:
- predicts = predicts[self.key]
- labels = batch[5]
- attention_mask = batch[2]
- if attention_mask is not None:
- active_loss = attention_mask.reshape([-1, ]) == 1
- active_output = predicts.reshape(
- [-1, self.num_classes])[active_loss]
- active_label = labels.reshape([-1, ])[active_loss]
- loss = self.loss_class(active_output, active_label)
- else:
- loss = self.loss_class(
- predicts.reshape([-1, self.num_classes]),
- labels.reshape([-1, ]))
- return {'loss': loss}
|