1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/FudanVI/FudanOCR/blob/main/text-gestalt/loss/stroke_focus_loss.py
- """
- import cv2
- import sys
- import time
- import string
- import random
- import numpy as np
- import paddle.nn as nn
- import paddle
- class StrokeFocusLoss(nn.Layer):
- def __init__(self, character_dict_path=None, **kwargs):
- super(StrokeFocusLoss, self).__init__(character_dict_path)
- self.mse_loss = nn.MSELoss()
- self.ce_loss = nn.CrossEntropyLoss()
- self.l1_loss = nn.L1Loss()
- self.english_stroke_alphabet = '0123456789'
- self.english_stroke_dict = {}
- for index in range(len(self.english_stroke_alphabet)):
- self.english_stroke_dict[self.english_stroke_alphabet[
- index]] = index
- stroke_decompose_lines = open(character_dict_path, 'r').readlines()
- self.dic = {}
- for line in stroke_decompose_lines:
- line = line.strip()
- character, sequence = line.split()
- self.dic[character] = sequence
- def forward(self, pred, data):
- sr_img = pred["sr_img"]
- hr_img = pred["hr_img"]
- mse_loss = self.mse_loss(sr_img, hr_img)
- word_attention_map_gt = pred["word_attention_map_gt"]
- word_attention_map_pred = pred["word_attention_map_pred"]
- hr_pred = pred["hr_pred"]
- sr_pred = pred["sr_pred"]
- attention_loss = paddle.nn.functional.l1_loss(word_attention_map_gt,
- word_attention_map_pred)
- loss = (mse_loss + attention_loss * 50) * 100
- return {
- "mse_loss": mse_loss,
- "attention_loss": attention_loss,
- "loss": loss
- }
|