123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/drrg_loss.py
- """
- import paddle
- import paddle.nn.functional as F
- from paddle import nn
- class DRRGLoss(nn.Layer):
- def __init__(self, ohem_ratio=3.0):
- super().__init__()
- self.ohem_ratio = ohem_ratio
- self.downsample_ratio = 1.0
- def balance_bce_loss(self, pred, gt, mask):
- """Balanced Binary-CrossEntropy Loss.
- Args:
- pred (Tensor): Shape of :math:`(1, H, W)`.
- gt (Tensor): Shape of :math:`(1, H, W)`.
- mask (Tensor): Shape of :math:`(1, H, W)`.
- Returns:
- Tensor: Balanced bce loss.
- """
- assert pred.shape == gt.shape == mask.shape
- assert paddle.all(pred >= 0) and paddle.all(pred <= 1)
- assert paddle.all(gt >= 0) and paddle.all(gt <= 1)
- positive = gt * mask
- negative = (1 - gt) * mask
- positive_count = int(positive.sum())
- if positive_count > 0:
- loss = F.binary_cross_entropy(pred, gt, reduction='none')
- positive_loss = paddle.sum(loss * positive)
- negative_loss = loss * negative
- negative_count = min(
- int(negative.sum()), int(positive_count * self.ohem_ratio))
- else:
- positive_loss = paddle.to_tensor(0.0)
- loss = F.binary_cross_entropy(pred, gt, reduction='none')
- negative_loss = loss * negative
- negative_count = 100
- negative_loss, _ = paddle.topk(
- negative_loss.reshape([-1]), negative_count)
- balance_loss = (positive_loss + paddle.sum(negative_loss)) / (
- float(positive_count + negative_count) + 1e-5)
- return balance_loss
- def gcn_loss(self, gcn_data):
- """CrossEntropy Loss from gcn module.
- Args:
- gcn_data (tuple(Tensor, Tensor)): The first is the
- prediction with shape :math:`(N, 2)` and the
- second is the gt label with shape :math:`(m, n)`
- where :math:`m * n = N`.
- Returns:
- Tensor: CrossEntropy loss.
- """
- gcn_pred, gt_labels = gcn_data
- gt_labels = gt_labels.reshape([-1])
- loss = F.cross_entropy(gcn_pred, gt_labels)
- return loss
- def bitmasks2tensor(self, bitmasks, target_sz):
- """Convert Bitmasks to tensor.
- Args:
- bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is
- for one img.
- target_sz (tuple(int, int)): The target tensor of size
- :math:`(H, W)`.
- Returns:
- list[Tensor]: The list of kernel tensors. Each element stands for
- one kernel level.
- """
- batch_size = len(bitmasks)
- results = []
- kernel = []
- for batch_inx in range(batch_size):
- mask = bitmasks[batch_inx]
- # hxw
- mask_sz = mask.shape
- # left, right, top, bottom
- pad = [0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]]
- mask = F.pad(mask, pad, mode='constant', value=0)
- kernel.append(mask)
- kernel = paddle.stack(kernel)
- results.append(kernel)
- return results
- def forward(self, preds, labels):
- """Compute Drrg loss.
- """
- assert isinstance(preds, tuple)
- gt_text_mask, gt_center_region_mask, gt_mask, gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map = labels[
- 1:8]
- downsample_ratio = self.downsample_ratio
- pred_maps, gcn_data = preds
- pred_text_region = pred_maps[:, 0, :, :]
- pred_center_region = pred_maps[:, 1, :, :]
- pred_sin_map = pred_maps[:, 2, :, :]
- pred_cos_map = pred_maps[:, 3, :, :]
- pred_top_height_map = pred_maps[:, 4, :, :]
- pred_bot_height_map = pred_maps[:, 5, :, :]
- feature_sz = pred_maps.shape
- # bitmask 2 tensor
- mapping = {
- 'gt_text_mask': paddle.cast(gt_text_mask, 'float32'),
- 'gt_center_region_mask':
- paddle.cast(gt_center_region_mask, 'float32'),
- 'gt_mask': paddle.cast(gt_mask, 'float32'),
- 'gt_top_height_map': paddle.cast(gt_top_height_map, 'float32'),
- 'gt_bot_height_map': paddle.cast(gt_bot_height_map, 'float32'),
- 'gt_sin_map': paddle.cast(gt_sin_map, 'float32'),
- 'gt_cos_map': paddle.cast(gt_cos_map, 'float32')
- }
- gt = {}
- for key, value in mapping.items():
- gt[key] = value
- if abs(downsample_ratio - 1.0) < 1e-2:
- gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
- else:
- gt[key] = [item.rescale(downsample_ratio) for item in gt[key]]
- gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
- if key in ['gt_top_height_map', 'gt_bot_height_map']:
- gt[key] = [item * downsample_ratio for item in gt[key]]
- gt[key] = [item for item in gt[key]]
- scale = paddle.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
- pred_sin_map = pred_sin_map * scale
- pred_cos_map = pred_cos_map * scale
- loss_text = self.balance_bce_loss(
- F.sigmoid(pred_text_region), gt['gt_text_mask'][0],
- gt['gt_mask'][0])
- text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0])
- negative_text_mask = ((1 - gt['gt_text_mask'][0]) * gt['gt_mask'][0])
- loss_center_map = F.binary_cross_entropy(
- F.sigmoid(pred_center_region),
- gt['gt_center_region_mask'][0],
- reduction='none')
- if int(text_mask.sum()) > 0:
- loss_center_positive = paddle.sum(loss_center_map *
- text_mask) / paddle.sum(text_mask)
- else:
- loss_center_positive = paddle.to_tensor(0.0)
- loss_center_negative = paddle.sum(
- loss_center_map *
- negative_text_mask) / paddle.sum(negative_text_mask)
- loss_center = loss_center_positive + 0.5 * loss_center_negative
- center_mask = (gt['gt_center_region_mask'][0] * gt['gt_mask'][0])
- if int(center_mask.sum()) > 0:
- map_sz = pred_top_height_map.shape
- ones = paddle.ones(map_sz, dtype='float32')
- loss_top = F.smooth_l1_loss(
- pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2),
- ones,
- reduction='none')
- loss_bot = F.smooth_l1_loss(
- pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2),
- ones,
- reduction='none')
- gt_height = (
- gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0])
- loss_height = paddle.sum(
- (paddle.log(gt_height + 1) *
- (loss_top + loss_bot)) * center_mask) / paddle.sum(center_mask)
- loss_sin = paddle.sum(
- F.smooth_l1_loss(
- pred_sin_map, gt['gt_sin_map'][0],
- reduction='none') * center_mask) / paddle.sum(center_mask)
- loss_cos = paddle.sum(
- F.smooth_l1_loss(
- pred_cos_map, gt['gt_cos_map'][0],
- reduction='none') * center_mask) / paddle.sum(center_mask)
- else:
- loss_height = paddle.to_tensor(0.0)
- loss_sin = paddle.to_tensor(0.0)
- loss_cos = paddle.to_tensor(0.0)
- loss_gcn = self.gcn_loss(gcn_data)
- loss = loss_text + loss_center + loss_height + loss_sin + loss_cos + loss_gcn
- results = dict(
- loss=loss,
- loss_text=loss_text,
- loss_center=loss_center,
- loss_height=loss_height,
- loss_sin=loss_sin,
- loss_cos=loss_cos,
- loss_gcn=loss_gcn)
- return results
|