123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 |
- // This code is refer from:
- // https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh
- #include <cassert>
- #include <cmath>
- #include <vector>
- #include "paddle/extension.h"
- #include <cuda.h>
- #define CUDA_1D_KERNEL_LOOP(i, n) \
- for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
- i += blockDim.x * gridDim.x)
- #define THREADS_PER_BLOCK 512
- inline int GET_BLOCKS(const int N) {
- int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
- int max_block_num = 4096;
- return min(optimal_block_num, max_block_num);
- }
- #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600
- static __inline__ __device__ double atomicAdd(double *address, double val) {
- unsigned long long int *address_as_ull = (unsigned long long int *)address;
- unsigned long long int old = *address_as_ull, assumed;
- if (val == 0.0)
- return __longlong_as_double(old);
- do {
- assumed = old;
- old = atomicCAS(address_as_ull, assumed,
- __double_as_longlong(val + __longlong_as_double(assumed)));
- } while (assumed != old);
- return __longlong_as_double(old);
- }
- #endif
- template <typename T>
- __device__ T bilinear_interpolate(const T *input, const int height,
- const int width, T y, T x,
- const int index /* index for debug only*/) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width)
- return 0;
- if (y <= 0)
- y = 0;
- if (x <= 0)
- x = 0;
- int y_low = (int)y;
- int x_low = (int)x;
- int y_high;
- int x_high;
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- // do bilinear interpolation
- T v1 = input[y_low * width + x_low];
- T v2 = input[y_low * width + x_high];
- T v3 = input[y_high * width + x_low];
- T v4 = input[y_high * width + x_high];
- T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
- T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- return val;
- }
- template <typename T>
- __device__ void
- bilinear_interpolate_gradient(const int height, const int width, T y, T x,
- T &w1, T &w2, T &w3, T &w4, int &x_low,
- int &x_high, int &y_low, int &y_high,
- const int index /* index for debug only*/) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) {
- // empty
- w1 = w2 = w3 = w4 = 0.;
- x_low = x_high = y_low = y_high = -1;
- return;
- }
- if (y <= 0)
- y = 0;
- if (x <= 0)
- x = 0;
- y_low = (int)y;
- x_low = (int)x;
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- // reference in forward
- // T v1 = input[y_low * width + x_low];
- // T v2 = input[y_low * width + x_high];
- // T v3 = input[y_high * width + x_low];
- // T v4 = input[y_high * width + x_high];
- // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
- return;
- }
- /*** Forward ***/
- template <typename scalar_t>
- __global__ void roi_align_rotated_cuda_forward_kernel(
- const int nthreads, const scalar_t *bottom_data,
- const scalar_t *bottom_rois, const scalar_t spatial_scale,
- const int sample_num, const bool aligned, const bool clockwise,
- const int channels, const int height, const int width,
- const int pooled_height, const int pooled_width, scalar_t *top_data) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
- const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
- int roi_batch_ind = offset_bottom_rois[0];
- // Do not using rounding; this implementation detail is critical
- scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0;
- scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset;
- scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset;
- scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
- scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
- // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
- scalar_t theta = offset_bottom_rois[5];
- if (clockwise) {
- theta = -theta; // If clockwise, the angle needs to be reversed.
- }
- if (!aligned) { // for backward-compatibility only
- // Force malformed ROIs to be 1x1
- roi_width = max(roi_width, (scalar_t)1.);
- roi_height = max(roi_height, (scalar_t)1.);
- }
- scalar_t bin_size_h = static_cast<scalar_t>(roi_height) /
- static_cast<scalar_t>(pooled_height);
- scalar_t bin_size_w =
- static_cast<scalar_t>(roi_width) / static_cast<scalar_t>(pooled_width);
- const scalar_t *offset_bottom_data =
- bottom_data + (roi_batch_ind * channels + c) * height * width;
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h = (sample_num > 0)
- ? sample_num
- : ceilf(roi_height / pooled_height); // e.g., = 2
- int roi_bin_grid_w =
- (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width);
- // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
- // Appropriate translation needs to be applied after.
- scalar_t roi_start_h = -roi_height / 2.0;
- scalar_t roi_start_w = -roi_width / 2.0;
- scalar_t cosscalar_theta = cos(theta);
- scalar_t sinscalar_theta = sin(theta);
- // We do average (integral) pooling inside a bin
- const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
- scalar_t output_val = 0.;
- for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1
- const scalar_t yy =
- roi_start_h + ph * bin_size_h +
- static_cast<scalar_t>(iy + .5f) * bin_size_h /
- static_cast<scalar_t>(roi_bin_grid_h); // e.g., 0.5, 1.5
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const scalar_t xx = roi_start_w + pw * bin_size_w +
- static_cast<scalar_t>(ix + .5f) * bin_size_w /
- static_cast<scalar_t>(roi_bin_grid_w);
- // Rotate by theta (counterclockwise) around the center and translate
- scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h;
- scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w;
- scalar_t val = bilinear_interpolate<scalar_t>(
- offset_bottom_data, height, width, y, x, index);
- output_val += val;
- }
- }
- output_val /= count;
- top_data[index] = output_val;
- }
- }
- /*** Backward ***/
- template <typename scalar_t>
- __global__ void roi_align_rotated_backward_cuda_kernel(
- const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois,
- const scalar_t spatial_scale, const int sample_num, const bool aligned,
- const bool clockwise, const int channels, const int height, const int width,
- const int pooled_height, const int pooled_width, scalar_t *bottom_diff) {
- CUDA_1D_KERNEL_LOOP(index, nthreads) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
- const scalar_t *offset_bottom_rois = bottom_rois + n * 6;
- int roi_batch_ind = offset_bottom_rois[0];
- // Do not round
- scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0;
- scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset;
- scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset;
- scalar_t roi_width = offset_bottom_rois[3] * spatial_scale;
- scalar_t roi_height = offset_bottom_rois[4] * spatial_scale;
- // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0;
- scalar_t theta = offset_bottom_rois[5];
- if (clockwise) {
- theta = -theta; // If clockwise, the angle needs to be reversed.
- }
- if (!aligned) { // for backward-compatibility only
- // Force malformed ROIs to be 1x1
- roi_width = max(roi_width, (scalar_t)1.);
- roi_height = max(roi_height, (scalar_t)1.);
- }
- scalar_t bin_size_h = static_cast<scalar_t>(roi_height) /
- static_cast<scalar_t>(pooled_height);
- scalar_t bin_size_w =
- static_cast<scalar_t>(roi_width) / static_cast<scalar_t>(pooled_width);
- scalar_t *offset_bottom_diff =
- bottom_diff + (roi_batch_ind * channels + c) * height * width;
- int top_offset = (n * channels + c) * pooled_height * pooled_width;
- const scalar_t *offset_top_diff = top_diff + top_offset;
- const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h = (sample_num > 0)
- ? sample_num
- : ceilf(roi_height / pooled_height); // e.g., = 2
- int roi_bin_grid_w =
- (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width);
- // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
- // Appropriate translation needs to be applied after.
- scalar_t roi_start_h = -roi_height / 2.0;
- scalar_t roi_start_w = -roi_width / 2.0;
- scalar_t cosTheta = cos(theta);
- scalar_t sinTheta = sin(theta);
- // We do average (integral) pooling inside a bin
- const scalar_t count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
- for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1
- const scalar_t yy =
- roi_start_h + ph * bin_size_h +
- static_cast<scalar_t>(iy + .5f) * bin_size_h /
- static_cast<scalar_t>(roi_bin_grid_h); // e.g., 0.5, 1.5
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const scalar_t xx = roi_start_w + pw * bin_size_w +
- static_cast<scalar_t>(ix + .5f) * bin_size_w /
- static_cast<scalar_t>(roi_bin_grid_w);
- // Rotate by theta around the center and translate
- scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h;
- scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w;
- scalar_t w1, w2, w3, w4;
- int x_low, x_high, y_low, y_high;
- bilinear_interpolate_gradient<scalar_t>(height, width, y, x, w1, w2, w3,
- w4, x_low, x_high, y_low,
- y_high, index);
- scalar_t g1 = top_diff_this_bin * w1 / count;
- scalar_t g2 = top_diff_this_bin * w2 / count;
- scalar_t g3 = top_diff_this_bin * w3 / count;
- scalar_t g4 = top_diff_this_bin * w4 / count;
- if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
- atomicAdd(offset_bottom_diff + y_low * width + x_low, g1);
- atomicAdd(offset_bottom_diff + y_low * width + x_high, g2);
- atomicAdd(offset_bottom_diff + y_high * width + x_low, g3);
- atomicAdd(offset_bottom_diff + y_high * width + x_high, g4);
- } // if
- } // ix
- } // iy
- } // CUDA_1D_KERNEL_LOOP
- } // RoIAlignBackward
- std::vector<paddle::Tensor>
- RoIAlignRotatedCUDAForward(const paddle::Tensor &input,
- const paddle::Tensor &rois, int aligned_height,
- int aligned_width, float spatial_scale,
- int sampling_ratio, bool aligned, bool clockwise) {
- auto num_rois = rois.shape()[0];
- auto channels = input.shape()[1];
- auto height = input.shape()[2];
- auto width = input.shape()[3];
- auto output =
- paddle::empty({num_rois, channels, aligned_height, aligned_width},
- input.type(), paddle::GPUPlace());
- auto output_size = output.numel();
- PD_DISPATCH_FLOATING_TYPES(
- input.type(), "roi_align_rotated_cuda_forward_kernel", ([&] {
- roi_align_rotated_cuda_forward_kernel<
- data_t><<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>(
- output_size, input.data<data_t>(), rois.data<data_t>(),
- static_cast<data_t>(spatial_scale), sampling_ratio, aligned,
- clockwise, channels, height, width, aligned_height, aligned_width,
- output.data<data_t>());
- }));
- return {output};
- }
- std::vector<paddle::Tensor> RoIAlignRotatedCUDABackward(
- const paddle::Tensor &input, const paddle::Tensor &rois,
- const paddle::Tensor &grad_output, int aligned_height, int aligned_width,
- float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) {
- auto num_rois = rois.shape()[0];
- auto batch_size = input.shape()[0];
- auto channels = input.shape()[1];
- auto height = input.shape()[2];
- auto width = input.shape()[3];
- auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0,
- input.type(), paddle::GPUPlace());
- const int output_size = num_rois * aligned_height * aligned_width * channels;
- PD_DISPATCH_FLOATING_TYPES(
- grad_output.type(), "roi_align_rotated_backward_cuda_kernel", ([&] {
- roi_align_rotated_backward_cuda_kernel<
- data_t><<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>(
- output_size, grad_output.data<data_t>(), rois.data<data_t>(),
- spatial_scale, sampling_ratio, aligned, clockwise, channels, height,
- width, aligned_height, aligned_width, grad_input.data<data_t>());
- }));
- return {grad_input};
- }
|