vqa_token_chunk.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from collections import defaultdict
  15. class VQASerTokenChunk(object):
  16. def __init__(self, max_seq_len=512, infer_mode=False, **kwargs):
  17. self.max_seq_len = max_seq_len
  18. self.infer_mode = infer_mode
  19. def __call__(self, data):
  20. encoded_inputs_all = []
  21. seq_len = len(data['input_ids'])
  22. for index in range(0, seq_len, self.max_seq_len):
  23. chunk_beg = index
  24. chunk_end = min(index + self.max_seq_len, seq_len)
  25. encoded_inputs_example = {}
  26. for key in data:
  27. if key in [
  28. 'label', 'input_ids', 'labels', 'token_type_ids',
  29. 'bbox', 'attention_mask'
  30. ]:
  31. if self.infer_mode and key == 'labels':
  32. encoded_inputs_example[key] = data[key]
  33. else:
  34. encoded_inputs_example[key] = data[key][chunk_beg:
  35. chunk_end]
  36. else:
  37. encoded_inputs_example[key] = data[key]
  38. encoded_inputs_all.append(encoded_inputs_example)
  39. if len(encoded_inputs_all) == 0:
  40. return None
  41. return encoded_inputs_all[0]
  42. class VQAReTokenChunk(object):
  43. def __init__(self,
  44. max_seq_len=512,
  45. entities_labels=None,
  46. infer_mode=False,
  47. **kwargs):
  48. self.max_seq_len = max_seq_len
  49. self.entities_labels = {
  50. 'HEADER': 0,
  51. 'QUESTION': 1,
  52. 'ANSWER': 2
  53. } if entities_labels is None else entities_labels
  54. self.infer_mode = infer_mode
  55. def __call__(self, data):
  56. # prepare data
  57. entities = data.pop('entities')
  58. relations = data.pop('relations')
  59. encoded_inputs_all = []
  60. for index in range(0, len(data["input_ids"]), self.max_seq_len):
  61. item = {}
  62. for key in data:
  63. if key in [
  64. 'label', 'input_ids', 'labels', 'token_type_ids',
  65. 'bbox', 'attention_mask'
  66. ]:
  67. if self.infer_mode and key == 'labels':
  68. item[key] = data[key]
  69. else:
  70. item[key] = data[key][index:index + self.max_seq_len]
  71. else:
  72. item[key] = data[key]
  73. # select entity in current chunk
  74. entities_in_this_span = []
  75. global_to_local_map = {} #
  76. for entity_id, entity in enumerate(entities):
  77. if (index <= entity["start"] < index + self.max_seq_len and
  78. index <= entity["end"] < index + self.max_seq_len):
  79. entity["start"] = entity["start"] - index
  80. entity["end"] = entity["end"] - index
  81. global_to_local_map[entity_id] = len(entities_in_this_span)
  82. entities_in_this_span.append(entity)
  83. # select relations in current chunk
  84. relations_in_this_span = []
  85. for relation in relations:
  86. if (index <= relation["start_index"] < index + self.max_seq_len
  87. and index <= relation["end_index"] <
  88. index + self.max_seq_len):
  89. relations_in_this_span.append({
  90. "head": global_to_local_map[relation["head"]],
  91. "tail": global_to_local_map[relation["tail"]],
  92. "start_index": relation["start_index"] - index,
  93. "end_index": relation["end_index"] - index,
  94. })
  95. item.update({
  96. "entities": self.reformat(entities_in_this_span),
  97. "relations": self.reformat(relations_in_this_span),
  98. })
  99. if len(item['entities']) > 0:
  100. item['entities']['label'] = [
  101. self.entities_labels[x] for x in item['entities']['label']
  102. ]
  103. encoded_inputs_all.append(item)
  104. if len(encoded_inputs_all) == 0:
  105. return None
  106. return encoded_inputs_all[0]
  107. def reformat(self, data):
  108. new_data = defaultdict(list)
  109. for item in data:
  110. for k, v in item.items():
  111. new_data[k].append(v)
  112. return new_data