123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from paddle_serving_server.web_service import WebService, Op
- import logging
- import numpy as np
- import cv2
- import base64
- # from paddle_serving_app.reader import OCRReader
- from ocr_reader import OCRReader, DetResizeForTest, ArgsParser
- from paddle_serving_app.reader import Sequential, ResizeByFactor
- from paddle_serving_app.reader import Div, Normalize, Transpose
- _LOGGER = logging.getLogger()
- class RecOp(Op):
- def init_op(self):
- self.ocr_reader = OCRReader(
- char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
- def preprocess(self, input_dicts, data_id, log_id):
- (_, input_dict), = input_dicts.items()
- raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
- data = np.fromstring(raw_im, np.uint8)
- im = cv2.imdecode(data, cv2.IMREAD_COLOR)
- feed_list = []
- max_wh_ratio = 0
- ## Many mini-batchs, the type of feed_data is list.
- max_batch_size = 6 # len(dt_boxes)
- # If max_batch_size is 0, skipping predict stage
- if max_batch_size == 0:
- return {}, True, None, ""
- boxes_size = max_batch_size
- rem = boxes_size % max_batch_size
- h, w = im.shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- _, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
- norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
- norm_img = norm_img[np.newaxis, :]
- feed = {"x": norm_img.copy()}
- feed_list.append(feed)
- return feed_list, False, None, ""
- def postprocess(self, input_dicts, fetch_data, data_id, log_id):
- res_list = []
- if isinstance(fetch_data, dict):
- if len(fetch_data) > 0:
- rec_batch_res = self.ocr_reader.postprocess(
- fetch_data, with_score=True)
- for res in rec_batch_res:
- res_list.append(res[0])
- elif isinstance(fetch_data, list):
- for one_batch in fetch_data:
- one_batch_res = self.ocr_reader.postprocess(
- one_batch, with_score=True)
- for res in one_batch_res:
- res_list.append(res[0])
- res = {"res": str(res_list)}
- return res, None, ""
- class OcrService(WebService):
- def get_pipeline_response(self, read_op):
- rec_op = RecOp(name="rec", input_ops=[read_op])
- return rec_op
- uci_service = OcrService(name="ocr")
- FLAGS = ArgsParser().parse_args()
- uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
- uci_service.run_service()
|