123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- import da_python as dap
- import cv2
- import argparse
- import os
- import glob
- from PIL import Image
- import copy
- import json
- from tqdm import tqdm
- def traverse_folder(path, image_paths):
- # 获取当前文件夹下的所有文件和子文件夹
- for file in os.listdir(path):
- # 获取文件路径
- file_path = os.path.join(path, file)
- # 判断文件类型,如果是图片则加入列表
- if os.path.isfile(file_path) and os.path.splitext(file_path)[1].lower() in allowed_extensions:
- image_paths.append(file_path)
- # 如果是文件夹,则递归调用本函数
- elif os.path.isdir(file_path):
- traverse_folder(file_path, image_paths)
- def add_labeling(model, key, image_paths, set_score, view_result_dir):
- da, create_result = dap.create(key, model)
- if create_result != dap.E_DA_SUCCESS:
- print('create document ai failed:{}'.format(create_result))
- exit()
- detect_engine, a = da.detection()
- # print(a)
- # 存放信息
- labelme_json = {}
- shape_dic = {}
- for image_path in tqdm(image_paths):
- image = cv2.imread(image_path)
- layout_analysis_result, layout_analysis_result_code = detect_engine.layout_analysis(image)
- if layout_analysis_result_code == dap.E_DA_SUCCESS:
- # 判断是否检测到目标
- if len(layout_analysis_result.boxes):
- # print(dir(layout_analysis_result))
- # print(layout_analysis_result.boxes)
- # print(layout_analysis_result.labels)
- # print(layout_analysis_result.scores)
- # labels_list = layout_analysis_result.labels
- # box_list = layout_analysis_result.boxes
- # score_list = layout_analysis_result.scores
- json_path = image_path.replace(os.path.splitext(image_path)[1], '.json')
- add_json_dic = {}
- # 当json文件不存在,但是模型又检测到目标时,创建json文件
- if not os.path.isfile(json_path):
- labelme_json['version'] = '5.0.1'
- labelme_json['flags'] = {}
- labelme_json['shapes'] = []
- labelme_json['imagePath'] = os.path.basename(image_path)
- labelme_json['imageData'] = None
- labelme_json['imageHeight'], labelme_json['imageWidth'] = image.shape[0], image.shape[1]
- labelme_json['updated_by'] = None
- json.dump(labelme_json, open(json_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)
- with open(json_path, 'r', encoding='utf-8') as jf:
- json_info = json.load(jf)
- # 根据需求(忽略人工修正后的json文件)
- if json_info['updated_by']:
- print('没有添加')
- continue
- # 过滤低置信度标签,添加目标标签
- for index, score in enumerate(layout_analysis_result.scores):
- # print(index, score)
- # 过滤低置信度标签
- if score < set_score:
- continue
- # print('检测到')
- # 添加目标标签
- if layout_analysis_result.labels[index] in ['Table_0', 'Table_std', 'Figure']:
- continue
- shape_dic['label'] = layout_analysis_result.labels[index]
- box = layout_analysis_result.boxes[index]
- x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
- shape_dic['points'] = [[x1, y1], [x2, y2]]
- shape_dic['group_id'] = None
- shape_dic['shape_type'] = 'rectangle' # 根据需求进行填写
- shape_dic['flags'] = {}
- json_info['shapes'].append(copy.deepcopy(shape_dic))
- json_info['updated_by'] = 3
- add_json_dic = json_info
- jf.close()
- json.dump(add_json_dic, open(json_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)
- visualize_im = dap.visualize.detection(image, layout_analysis_result)
- cv2.imwrite(os.path.join(view_result_dir, os.path.basename(image_path)), visualize_im)
- else:
- print('magic color infer failed:{}'.format(layout_analysis_result_code))
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--model', type=str, default='', help='')
- parser.add_argument('--model_licence', type=str, default='', help='')
- parser.add_argument('--score', type=int, default=0.7, help='')
- parser.add_argument('--image_dir', type=str, default='', help='')
- parser.add_argument('--view_result_dir', type=str, default='', help='')
- args = parser.parse_args()
- # 定义允许的图片格式
- allowed_extensions = ['.jpg', '.jpeg', '.png', '.gif']
- # 初始化图片路径列表
- image_paths = []
- # 调用遍历函数
- traverse_folder(args.image_dir, image_paths)
- add_labeling(args.model, args.model_key, image_paths, args.score, args.view_result_dir)
|