123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- import json
- import os
- import random
- from pycocotools.coco import COCO
- import argparse
- import shutil
- def ensure_coco_save_dir(output):
- train_dir = os.path.join(output, 'train')
- if not os.path.exists(train_dir):
- os.makedirs(train_dir)
- train_image_dir = os.path.join(output, 'train', 'images')
- if not os.path.exists(train_image_dir):
- os.makedirs(train_image_dir)
- val_dir = os.path.join(output, 'val')
- if not os.path.exists(val_dir):
- os.makedirs(val_dir)
- val_image_dir = os.path.join(output, 'val', 'images')
- if not os.path.exists(val_image_dir):
- os.makedirs(val_image_dir)
- def ensure_yolo_save_dir(output):
- train_dir = os.path.join(output, 'train')
- if not os.path.exists(train_dir):
- os.makedirs(train_dir)
- train_image_dir = os.path.join(output, 'train', 'images')
- if not os.path.exists(train_image_dir):
- os.makedirs(train_image_dir)
- train_label_dir = os.path.join(output, 'train', 'labels')
- if not os.path.exists(train_label_dir):
- os.makedirs(train_label_dir)
- test_dir = os.path.join(output, 'val')
- if not os.path.exists(test_dir):
- os.makedirs(test_dir)
- test_image_dir = os.path.join(output, 'val', 'images')
- if not os.path.exists(test_image_dir):
- os.makedirs(test_image_dir)
- test_label_dir = os.path.join(output, 'val', 'labels')
- if not os.path.exists(test_label_dir):
- os.makedirs(test_label_dir)
- def process_coco(coco_json, image_dir, train_ratio, output):
- # 加载 COCO 数据集
- coco = COCO(coco_json)
- # 获取所有图像的 ID
- image_ids = coco.getImgIds()
- # 随机划分训练集和测试集(例如,80% 为训练集,20% 为测试集)
- train_image_ids = random.sample(image_ids, int(len(image_ids) * train_ratio))
- val_image_ids = list(set(image_ids) - set(train_image_ids))
- # 为训练集和测试集创建新的 JSON 文件
- train_json = {'images': [], 'annotations': [], 'categories': coco.dataset['categories'], 'info': coco.dataset['info']}
- val_json = {'images': [], 'annotations': [], 'categories': coco.dataset['categories'], 'info': coco.dataset['info']}
- train_dir = os.path.join(output, 'train')
- val_dir = os.path.join(output, 'val')
- # 遍历图像 ID,并将它们分配到训练集或测试集
- for image_id in image_ids:
- image_info = coco.loadImgs(image_id)[0]
- file_name = os.path.join(image_dir, image_info['file_name'])
- # 检查图像文件是否存在(可选)
- if os.path.exists(file_name):
- if image_id in train_image_ids:
- train_json['images'].append(image_info)
- train_image_path = os.path.join(train_dir, image_info['file_name'])
- # 还需要获取并添加相关的标注信息到 train_json['annotations']
- annot_list = [annotation for annotation in coco.dataset['annotations'] if
- annotation['image_id'] == image_id]
- train_json['annotations'].extend(annot_list)
- shutil.copy2(file_name, train_image_path)
- else:
- val_json['images'].append(image_info)
- val_image_path = os.path.join(val_dir, image_info['file_name'])
- # 还需要获取并添加相关的标注信息到 val_json['annotations']
- annot_list = [annotation for annotation in coco.dataset['annotations'] if
- annotation['image_id'] == image_id]
- val_json['annotations'].extend(annot_list)
- shutil.copy2(file_name, val_image_path)
- # 保存新的 JSON 文件(这里省略了保存 annotations 的部分)
- train_json_path = os.path.join(output, 'train', 'coco_annotations.json')
- val_json_path = os.path.join(output, 'val', 'coco_annotations.json')
- with open(train_json_path, 'w') as f:
- json.dump(train_json, f, indent=2)
- with open(val_json_path, 'w') as f:
- json.dump(val_json, f, indent=2)
- def process_yolo(image_dir, train_ratio, output):
- images_dir = os.path.join(image_dir, 'images')
- labels_dir = os.path.join(image_dir, 'labels')
- image_files = os.listdir(images_dir)
- train_files = random.sample(image_files, int(len(image_files) * train_ratio))
- val_files = list(set(image_files) - set(train_files))
- train_images_dir = os.path.join(output, 'train', 'images')
- train_labels_dir = os.path.join(output, 'train', 'labels')
- val_images_dir = os.path.join(output, 'val', 'images')
- val_labels_dir = os.path.join(output, 'val', 'labels')
- for file_name in train_files:
- shutil.copy2(os.path.join(images_dir, file_name), train_images_dir)
- # label_file_name = file_name.replace('.jpg', '.txt')
- prefix = file_name[:-4]
- label_file_name = prefix + ".txt"
- shutil.copy2(os.path.join(labels_dir, label_file_name), train_labels_dir)
- for file_name in val_files:
- shutil.copy2(os.path.join(images_dir, file_name), val_images_dir)
- # label_file_name = file_name.replace('.jpg', '.txt')
- prefix = file_name[:-4]
- label_file_name = prefix + ".txt"
- shutil.copy2(os.path.join(labels_dir, label_file_name), val_labels_dir)
- # 复制 image_dir 下的其他文件到 output
- for item in os.listdir(image_dir):
- item_path = os.path.join(image_dir, item)
- if os.path.isfile(item_path) and item not in ['images', 'labels']:
- shutil.copy2(item_path, output)
- # 主程序入口,处理命令行参数
- if __name__ == '__main__':
- parser = argparse.ArgumentParser("处理数据集\n")
- parser.add_argument("--coco_json", help="COCO 格式的 JSON 文件路径")
- parser.add_argument("image_dir", help="图片文件夹路径")
- parser.add_argument("type", help="数据标注格式类型,支持 'coco' 或 'yolo'")
- parser.add_argument("--ratio", default=0.8, type=float, help="训练集的比例,默认是 0.8")
- parser.add_argument("output", help="输出路径")
- args = parser.parse_args()
- # 根据数据标注格式类型调用不同的处理函数
- if args.type == 'coco':
- ensure_coco_save_dir(args.output)
- process_coco(args.coco_json, args.image_dir, args.ratio, args.output)
- elif args.type == 'yolo':
- ensure_yolo_save_dir(args.output)
- process_yolo(args.image_dir, args.ratio, args.output)
|