1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- class VQAReTokenLayoutLMPostProcess(object):
- """ Convert between text-label and text-index """
- def __init__(self, **kwargs):
- super(VQAReTokenLayoutLMPostProcess, self).__init__()
- def __call__(self, preds, label=None, *args, **kwargs):
- pred_relations = preds['pred_relations']
- if isinstance(preds['pred_relations'], paddle.Tensor):
- pred_relations = pred_relations.numpy()
- pred_relations = self.decode_pred(pred_relations)
- if label is not None:
- return self._metric(pred_relations, label)
- else:
- return self._infer(pred_relations, *args, **kwargs)
- def _metric(self, pred_relations, label):
- return pred_relations, label[-1], label[-2]
- def _infer(self, pred_relations, *args, **kwargs):
- ser_results = kwargs['ser_results']
- entity_idx_dict_batch = kwargs['entity_idx_dict_batch']
- # merge relations and ocr info
- results = []
- for pred_relation, ser_result, entity_idx_dict in zip(
- pred_relations, ser_results, entity_idx_dict_batch):
- result = []
- used_tail_id = []
- for relation in pred_relation:
- if relation['tail_id'] in used_tail_id:
- continue
- used_tail_id.append(relation['tail_id'])
- ocr_info_head = ser_result[entity_idx_dict[relation['head_id']]]
- ocr_info_tail = ser_result[entity_idx_dict[relation['tail_id']]]
- result.append((ocr_info_head, ocr_info_tail))
- results.append(result)
- return results
- def decode_pred(self, pred_relations):
- pred_relations_new = []
- for pred_relation in pred_relations:
- pred_relation_new = []
- pred_relation = pred_relation[1:pred_relation[0, 0, 0] + 1]
- for relation in pred_relation:
- relation_new = dict()
- relation_new['head_id'] = relation[0, 0]
- relation_new['head'] = tuple(relation[1])
- relation_new['head_type'] = relation[2, 0]
- relation_new['tail_id'] = relation[3, 0]
- relation_new['tail'] = tuple(relation[4])
- relation_new['tail_type'] = relation[5, 0]
- relation_new['type'] = relation[6, 0]
- pred_relation_new.append(relation_new)
- pred_relations_new.append(pred_relation_new)
- return pred_relations_new
- class DistillationRePostProcess(VQAReTokenLayoutLMPostProcess):
- """
- DistillationRePostProcess
- """
- def __init__(self, model_name=["Student"], key=None, **kwargs):
- super().__init__(**kwargs)
- if not isinstance(model_name, list):
- model_name = [model_name]
- self.model_name = model_name
- self.key = key
- def __call__(self, preds, *args, **kwargs):
- output = dict()
- for name in self.model_name:
- pred = preds[name]
- if self.key is not None:
- pred = pred[self.key]
- output[name] = super().__call__(pred, *args, **kwargs)
- return output
|