PaddleServing预测功能测试的主程序为test_serving_infer_python.sh
和test_serving_infer_cpp.sh
,可以测试基于PaddleServing的部署功能。
基于训练是否使用量化,进行本测试的模型可以分为正常模型
和量化模型
,这两类模型对应的Serving预测功能汇总如下:
模型类型 | device | batchsize | tensorrt | mkldnn | cpu多线程 |
---|---|---|---|---|---|
正常模型 | GPU | 1/2 | fp32/fp16 | - | - |
正常模型 | CPU | 1/2 | - | fp32 | 支持 |
量化模型 | GPU | 1/2 | int8 | - | - |
量化模型 | CPU | 1/2 | - | int8 | 支持 |
运行环境配置请参考文档的内容配置TIPC的运行环境。
python serving
先运行prepare.sh
准备数据和模型,然后运行test_serving_infer_python.sh
进行测试,最终在test_tipc/output
目录下生成serving_infer_python*.log
后缀的日志文件。
bash test_tipc/prepare.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer"
# 用法1:
bash test_tipc/test_serving_infer_python.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt
# 用法2: 指定GPU卡预测,第二个传入参数为GPU卡号
bash test_tipc/test_serving_infer_python.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "1"
cpp serving
先运行prepare.sh
准备数据和模型,然后运行test_serving_infer_cpp.sh
进行测试,最终在test_tipc/output
目录下生成serving_infer_cpp*.log
后缀的日志文件。
bash test_tipc/prepare.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt "serving_infer"
# 用法:
bash test_tipc/test_serving_infer_cpp.sh test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt
各测试的运行情况会打印在 test_tipc/output/results_serving.log
中:
运行成功时会输出:
Run successfully with command - python3.7 pipeline_http_client.py --image_dir=../../doc/imgs > ../../tests/output/server_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log 2>&1 !
Run successfully with command - xxxxx
...
运行失败时会输出:
Run failed with command - python3.7 pipeline_http_client.py --image_dir=../../doc/imgs > ../../tests/output/server_infer_cpu_usemkldnn_True_threads_1_batchsize_1.log 2>&1 !
Run failed with command - python3.7 pipeline_http_client.py --image_dir=../../doc/imgs > ../../tests/output/server_infer_cpu_usemkldnn_True_threads_6_batchsize_1.log 2>&1 !
Run failed with command - xxxxx
...
详细的预测结果会存在 test_tipc/output/ 文件夹下,例如server_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log
中会返回检测框的坐标:
{'err_no': 0, 'err_msg': '', 'key': ['dt_boxes'], 'value': ['[[[ 78. 642.]\n [409. 640.]\n [409. 657.]\n
[ 78. 659.]]\n\n [[ 75. 614.]\n [211. 614.]\n [211. 635.]\n [ 75. 635.]]\n\n
[[103. 554.]\n [135. 554.]\n [135. 575.]\n [103. 575.]]\n\n [[ 75. 531.]\n
[347. 531.]\n [347. 549.]\n [ 75. 549.] ]\n\n [[ 76. 503.]\n [309. 498.]\n
[309. 521.]\n [ 76. 526.]]\n\n [[163. 462.]\n [317. 462.]\n [317. 493.]\n
[163. 493.]]\n\n [[324. 431.]\n [414. 431.]\n [414. 452.]\n [324. 452.]]\n\n
[[ 76. 412.]\n [208. 408.]\n [209. 424.]\n [ 76. 428.]]\n\n [[307. 409.]\n
[428. 409.]\n [428. 426.]\n [307 . 426.]]\n\n [[ 74. 385.]\n [217. 382.]\n
[217. 400.]\n [ 74. 403.]]\n\n [[308. 381.]\n [427. 380.]\n [427. 400.]\n
[308. 401.]]\n\n [[ 74. 363.]\n [195. 362.]\n [195. 378.]\n [ 74. 379.]]\n\n
[[303. 359.]\n [423. 357.]\n [423. 375.]\n [303. 377.]]\n\n [[ 70. 336.]\n
[239. 334.]\n [239. 354.]\ n [ 70. 356.]]\n\n [[ 70. 312.]\n [204. 310.]\n
[204. 327.]\n [ 70. 330.]]\n\n [[303. 308.]\n [419. 306.]\n [419. 326.]\n
[303. 328.]]\n\n [[113. 2 72.]\n [246. 270.]\n [247. 299.]\n [113. 301.]]\n\n
[[361. 269.]\n [384. 269.]\n [384. 296.]\n [361. 296.]]\n\n [[ 70. 250.]\n
[243. 246.]\n [243. 265.]\n [ 70. 269.]]\n\n [[ 65. 221.]\n [187. 220.]\n
[187. 240.]\n [ 65. 241.]]\n\n [[337. 216.]\n [382. 216.]\n [382. 240.]\n
[337. 240.]]\n\n [ [ 65. 196.]\n [247. 193.]\n [247. 213.]\n [ 65. 216.]]\n\n
[[296. 197.]\n [423. 191.]\n [424. 209.]\n [296. 215.]]\n\n [[ 65. 167.]\n [244. 167.]\n
[244. 186.]\n [ 65. 186.]]\n\n [[ 67. 139.]\n [290. 139.]\n [290. 159.]\n [ 67. 159.]]\n\n
[[ 68. 113.]\n [410. 113.]\n [410. 128.]\n [ 68. 129.] ]\n\n [[277. 87.]\n [416. 87.]\n
[416. 108.]\n [277. 108.]]\n\n [[ 79. 28.]\n [132. 28.]\n [132. 62.]\n [ 79. 62.]]\n\n
[[163. 17.]\n [410. 14.]\n [410. 50.]\n [163. 53.]]]']}
本文档为功能测试用,更详细的Serving预测使用教程请参考:PaddleDetection 服务化部署