123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import numpy as np
- from PIL import Image, ImageDraw
- import cv2
- import math
- from .colormap import colormap
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- __all__ = ['visualize_results']
- def visualize_results(image,
- bbox_res,
- mask_res,
- segm_res,
- keypoint_res,
- pose3d_res,
- im_id,
- catid2name,
- threshold=0.5):
- """
- Visualize bbox and mask results
- """
- if bbox_res is not None:
- image = draw_bbox(image, im_id, catid2name, bbox_res, threshold)
- if mask_res is not None:
- image = draw_mask(image, im_id, mask_res, threshold)
- if segm_res is not None:
- image = draw_segm(image, im_id, catid2name, segm_res, threshold)
- if keypoint_res is not None:
- image = draw_pose(image, keypoint_res, threshold)
- if pose3d_res is not None:
- image = draw_pose3d(image, pose3d_res, threshold)
- return image
- def draw_mask(image, im_id, segms, threshold, alpha=0.7):
- """
- Draw mask on image
- """
- mask_color_id = 0
- w_ratio = .4
- color_list = colormap(rgb=True)
- img_array = np.array(image).astype('float32')
- for dt in np.array(segms):
- if im_id != dt['image_id']:
- continue
- segm, score = dt['segmentation'], dt['score']
- if score < threshold:
- continue
- import pycocotools.mask as mask_util
- mask = mask_util.decode(segm) * 255
- color_mask = color_list[mask_color_id % len(color_list), 0:3]
- mask_color_id += 1
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- img_array[idx[0], idx[1], :] *= 1.0 - alpha
- img_array[idx[0], idx[1], :] += alpha * color_mask
- return Image.fromarray(img_array.astype('uint8'))
- def draw_bbox(image, im_id, catid2name, bboxes, threshold):
- """
- Draw bbox on image
- """
- draw = ImageDraw.Draw(image)
- catid2color = {}
- color_list = colormap(rgb=True)[:40]
- for dt in np.array(bboxes):
- if im_id != dt['image_id']:
- continue
- catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
- if score < threshold:
- continue
- if catid not in catid2color:
- idx = np.random.randint(len(color_list))
- catid2color[catid] = color_list[idx]
- color = tuple(catid2color[catid])
- # draw bbox
- if len(bbox) == 4:
- # draw bbox
- xmin, ymin, w, h = bbox
- xmax = xmin + w
- ymax = ymin + h
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=2,
- fill=color)
- elif len(bbox) == 8:
- x1, y1, x2, y2, x3, y3, x4, y4 = bbox
- draw.line(
- [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
- width=2,
- fill=color)
- xmin = min(x1, x2, x3, x4)
- ymin = min(y1, y2, y3, y4)
- else:
- logger.error('the shape of bbox must be [M, 4] or [M, 8]!')
- # draw label
- text = "{} {:.2f}".format(catid2name[catid], score)
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
- return image
- def save_result(save_path, results, catid2name, threshold):
- """
- save result as txt
- """
- img_id = int(results["im_id"])
- with open(save_path, 'w') as f:
- if "bbox_res" in results:
- for dt in results["bbox_res"]:
- catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
- if score < threshold:
- continue
- # each bbox result as a line
- # for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4
- # for bbox: classname score x1 y1 w h
- bbox_pred = '{} {} '.format(catid2name[catid],
- score) + ' '.join(
- [str(e) for e in bbox])
- f.write(bbox_pred + '\n')
- elif "keypoint_res" in results:
- for dt in results["keypoint_res"]:
- kpts = dt['keypoints']
- scores = dt['score']
- keypoint_pred = [img_id, scores, kpts]
- print(keypoint_pred, file=f)
- else:
- print("No valid results found, skip txt save")
- def draw_segm(image,
- im_id,
- catid2name,
- segms,
- threshold,
- alpha=0.7,
- draw_box=True):
- """
- Draw segmentation on image
- """
- mask_color_id = 0
- w_ratio = .4
- color_list = colormap(rgb=True)
- img_array = np.array(image).astype('float32')
- for dt in np.array(segms):
- if im_id != dt['image_id']:
- continue
- segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
- if score < threshold:
- continue
- import pycocotools.mask as mask_util
- mask = mask_util.decode(segm) * 255
- color_mask = color_list[mask_color_id % len(color_list), 0:3]
- mask_color_id += 1
- for c in range(3):
- color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
- idx = np.nonzero(mask)
- img_array[idx[0], idx[1], :] *= 1.0 - alpha
- img_array[idx[0], idx[1], :] += alpha * color_mask
- if not draw_box:
- center_y, center_x = ndimage.measurements.center_of_mass(mask)
- label_text = "{}".format(catid2name[catid])
- vis_pos = (max(int(center_x) - 10, 0), int(center_y))
- cv2.putText(img_array, label_text, vis_pos,
- cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
- else:
- mask = mask_util.decode(segm) * 255
- sum_x = np.sum(mask, axis=0)
- x = np.where(sum_x > 0.5)[0]
- sum_y = np.sum(mask, axis=1)
- y = np.where(sum_y > 0.5)[0]
- x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
- cv2.rectangle(img_array, (x0, y0), (x1, y1),
- tuple(color_mask.astype('int32').tolist()), 1)
- bbox_text = '%s %.2f' % (catid2name[catid], score)
- t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
- cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
- y0 - t_size[1] - 3),
- tuple(color_mask.astype('int32').tolist()), -1)
- cv2.putText(
- img_array,
- bbox_text, (x0, y0 - 2),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.3, (0, 0, 0),
- 1,
- lineType=cv2.LINE_AA)
- return Image.fromarray(img_array.astype('uint8'))
- def draw_pose(image,
- results,
- visual_thread=0.6,
- save_name='pose.jpg',
- save_dir='output',
- returnimg=False,
- ids=None):
- try:
- import matplotlib.pyplot as plt
- import matplotlib
- plt.switch_backend('agg')
- except Exception as e:
- logger.error('Matplotlib not found, please install matplotlib.'
- 'for example: `pip install matplotlib`.')
- raise e
- skeletons = np.array([item['keypoints'] for item in results])
- kpt_nums = 17
- if len(skeletons) > 0:
- kpt_nums = int(skeletons.shape[1] / 3)
- skeletons = skeletons.reshape(-1, kpt_nums, 3)
- if kpt_nums == 17: #plot coco keypoint
- EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
- (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
- (13, 15), (14, 16), (11, 12)]
- else: #plot mpii keypoint
- EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
- (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
- (8, 13)]
- NUM_EDGES = len(EDGES)
- colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
- [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
- [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
- cmap = matplotlib.cm.get_cmap('hsv')
- plt.figure()
- img = np.array(image).astype('float32')
- color_set = results['colors'] if 'colors' in results else None
- if 'bbox' in results and ids is None:
- bboxs = results['bbox']
- for j, rect in enumerate(bboxs):
- xmin, ymin, xmax, ymax = rect
- color = colors[0] if color_set is None else colors[color_set[j] %
- len(colors)]
- cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
- canvas = img.copy()
- for i in range(kpt_nums):
- for j in range(len(skeletons)):
- if skeletons[j][i, 2] < visual_thread:
- continue
- if ids is None:
- color = colors[i] if color_set is None else colors[color_set[j]
- %
- len(colors)]
- else:
- color = get_color(ids[j])
- cv2.circle(
- canvas,
- tuple(skeletons[j][i, 0:2].astype('int32')),
- 2,
- color,
- thickness=-1)
- to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
- fig = matplotlib.pyplot.gcf()
- stickwidth = 2
- for i in range(NUM_EDGES):
- for j in range(len(skeletons)):
- edge = EDGES[i]
- if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[
- 1], 2] < visual_thread:
- continue
- cur_canvas = canvas.copy()
- X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
- Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
- mX = np.mean(X)
- mY = np.mean(Y)
- length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
- angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
- polygon = cv2.ellipse2Poly((int(mY), int(mX)),
- (int(length / 2), stickwidth),
- int(angle), 0, 360, 1)
- if ids is None:
- color = colors[i] if color_set is None else colors[color_set[j]
- %
- len(colors)]
- else:
- color = get_color(ids[j])
- cv2.fillConvexPoly(cur_canvas, polygon, color)
- canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
- image = Image.fromarray(canvas.astype('uint8'))
- plt.close()
- return image
- def draw_pose3d(image,
- results,
- visual_thread=0.6,
- save_name='pose3d.jpg',
- save_dir='output',
- returnimg=False,
- ids=None):
- try:
- import matplotlib.pyplot as plt
- import matplotlib
- plt.switch_backend('agg')
- except Exception as e:
- logger.error('Matplotlib not found, please install matplotlib.'
- 'for example: `pip install matplotlib`.')
- raise e
- pose3d = np.array(results[0]['pose3d']) * 1000
- if pose3d.shape[0] == 24:
- joints_connectivity_dict = [
- [0, 1, 0], [1, 2, 0], [5, 4, 1], [4, 3, 1], [2, 3, 0], [2, 14, 1],
- [3, 14, 1], [14, 15, 1], [15, 16, 1], [16, 12, 1], [6, 7, 0],
- [7, 8, 0], [11, 10, 1], [10, 9, 1], [8, 12, 0], [9, 12, 1],
- [12, 19, 1], [19, 18, 1], [19, 20, 0], [19, 21, 1], [22, 20, 0],
- [23, 21, 1]
- ]
- elif pose3d.shape[0] == 14:
- joints_connectivity_dict = [
- [0, 1, 0], [1, 2, 0], [5, 4, 1], [4, 3, 1], [2, 3, 0], [2, 12, 0],
- [3, 12, 1], [6, 7, 0], [7, 8, 0], [11, 10, 1], [10, 9, 1],
- [8, 12, 0], [9, 12, 1], [12, 13, 1]
- ]
- else:
- print(
- "not defined joints number :{}, cannot visualize because unknown of joint connectivity".
- format(pose.shape[0]))
- return
- def draw3Dpose(pose3d,
- ax,
- lcolor="#3498db",
- rcolor="#e74c3c",
- add_labels=False):
- # pose3d = orthographic_projection(pose3d, cam)
- for i in joints_connectivity_dict:
- x, y, z = [
- np.array([pose3d[i[0], j], pose3d[i[1], j]]) for j in range(3)
- ]
- ax.plot(-x, -z, -y, lw=2, c=lcolor if i[2] else rcolor)
- RADIUS = 1000
- center_xy = 2 if pose3d.shape[0] == 14 else 14
- x, y, z = pose3d[center_xy, 0], pose3d[center_xy, 1], pose3d[center_xy,
- 2]
- ax.set_xlim3d([-RADIUS + x, RADIUS + x])
- ax.set_ylim3d([-RADIUS + y, RADIUS + y])
- ax.set_zlim3d([-RADIUS + z, RADIUS + z])
- ax.set_xlabel("x")
- ax.set_ylabel("y")
- ax.set_zlabel("z")
- def draw2Dpose(pose2d,
- ax,
- lcolor="#3498db",
- rcolor="#e74c3c",
- add_labels=False):
- for i in joints_connectivity_dict:
- if pose2d[i[0], 2] and pose2d[i[1], 2]:
- x, y = [
- np.array([pose2d[i[0], j], pose2d[i[1], j]])
- for j in range(2)
- ]
- ax.plot(x, y, 0, lw=2, c=lcolor if i[2] else rcolor)
- def draw_img_pose(pose3d,
- pose2d=None,
- frame=None,
- figsize=(12, 12),
- savepath=None):
- fig = plt.figure(figsize=figsize, dpi=80)
- # fig.clear()
- fig.tight_layout()
- ax = fig.add_subplot(221)
- if frame is not None:
- ax.imshow(frame, interpolation='nearest')
- if pose2d is not None:
- draw2Dpose(pose2d, ax)
- ax = fig.add_subplot(222, projection='3d')
- ax.view_init(45, 45)
- draw3Dpose(pose3d, ax)
- ax = fig.add_subplot(223, projection='3d')
- ax.view_init(0, 0)
- draw3Dpose(pose3d, ax)
- ax = fig.add_subplot(224, projection='3d')
- ax.view_init(0, 90)
- draw3Dpose(pose3d, ax)
- if savepath is not None:
- plt.savefig(savepath)
- plt.close()
- else:
- return fig
- def fig2data(fig):
- """
- fig = plt.figure()
- image = fig2data(fig)
- @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
- @param fig a matplotlib figure
- @return a numpy 3D array of RGBA values
- """
- # draw the renderer
- fig.canvas.draw()
- # Get the RGBA buffer from the figure
- w, h = fig.canvas.get_width_height()
- buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
- buf.shape = (w, h, 4)
- # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
- buf = np.roll(buf, 3, axis=2)
- image = Image.frombytes("RGBA", (w, h), buf.tostring())
- return image.convert("RGB")
- fig = draw_img_pose(pose3d, frame=image)
- data = fig2data(fig)
- return data
|