123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import errno
- import os
- import time
- import numpy as np
- import paddle
- import paddle.nn as nn
- from .download import get_weights_path
- from .logger import setup_logger
- logger = setup_logger(__name__)
- def is_url(path):
- """
- Whether path is URL.
- Args:
- path (string): URL string or not.
- """
- return path.startswith('http://') \
- or path.startswith('https://') \
- or path.startswith('ppdet://')
- def _get_unique_endpoints(trainer_endpoints):
- # Sorting is to avoid different environmental variables for each card
- trainer_endpoints.sort()
- ips = set()
- unique_endpoints = set()
- for endpoint in trainer_endpoints:
- ip = endpoint.split(":")[0]
- if ip in ips:
- continue
- ips.add(ip)
- unique_endpoints.add(endpoint)
- logger.info("unique_endpoints {}".format(unique_endpoints))
- return unique_endpoints
- def _strip_postfix(path):
- path, ext = os.path.splitext(path)
- assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
- "Unknown postfix {} from weights".format(ext)
- return path
- def load_weight(model, weight, optimizer=None, ema=None, exchange=True):
- if is_url(weight):
- weight = get_weights_path(weight)
- path = _strip_postfix(weight)
- pdparam_path = path + '.pdparams'
- if not os.path.exists(pdparam_path):
- raise ValueError("Model pretrain path {} does not "
- "exists.".format(pdparam_path))
- if ema is not None and os.path.exists(path + '.pdema'):
- if exchange:
- # Exchange model and ema_model to load
- logger.info('Exchange model and ema_model to load:')
- ema_state_dict = paddle.load(pdparam_path)
- logger.info('Loading ema_model weights from {}'.format(path +
- '.pdparams'))
- param_state_dict = paddle.load(path + '.pdema')
- logger.info('Loading model weights from {}'.format(path + '.pdema'))
- else:
- ema_state_dict = paddle.load(path + '.pdema')
- logger.info('Loading ema_model weights from {}'.format(path +
- '.pdema'))
- param_state_dict = paddle.load(pdparam_path)
- logger.info('Loading model weights from {}'.format(path +
- '.pdparams'))
- else:
- ema_state_dict = None
- param_state_dict = paddle.load(pdparam_path)
- model_dict = model.state_dict()
- model_weight = {}
- incorrect_keys = 0
- for key, value in model_dict.items():
- if key in param_state_dict.keys():
- if isinstance(param_state_dict[key], np.ndarray):
- param_state_dict[key] = paddle.to_tensor(param_state_dict[key])
- if value.dtype == param_state_dict[key].dtype:
- model_weight[key] = param_state_dict[key]
- else:
- model_weight[key] = param_state_dict[key].astype(value.dtype)
- else:
- logger.info('Unmatched key: {}'.format(key))
- incorrect_keys += 1
- assert incorrect_keys == 0, "Load weight {} incorrectly, \
- {} keys unmatched, please check again.".format(weight,
- incorrect_keys)
- logger.info('Finish resuming model weights: {}'.format(pdparam_path))
- model.set_dict(model_weight)
- last_epoch = 0
- if optimizer is not None and os.path.exists(path + '.pdopt'):
- optim_state_dict = paddle.load(path + '.pdopt')
- # to solve resume bug, will it be fixed in paddle 2.0
- for key in optimizer.state_dict().keys():
- if not key in optim_state_dict.keys():
- optim_state_dict[key] = optimizer.state_dict()[key]
- if 'last_epoch' in optim_state_dict:
- last_epoch = optim_state_dict.pop('last_epoch')
- optimizer.set_state_dict(optim_state_dict)
- if ema_state_dict is not None:
- ema.resume(ema_state_dict,
- optim_state_dict['LR_Scheduler']['last_epoch'])
- elif ema_state_dict is not None:
- ema.resume(ema_state_dict)
- return last_epoch
- def match_state_dict(model_state_dict, weight_state_dict):
- """
- Match between the model state dict and pretrained weight state dict.
- Return the matched state dict.
- The method supposes that all the names in pretrained weight state dict are
- subclass of the names in models`, if the prefix 'backbone.' in pretrained weight
- keys is stripped. And we could get the candidates for each model key. Then we
- select the name with the longest matched size as the final match result. For
- example, the model state dict has the name of
- 'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as
- name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We
- match the 'res2.res2a.branch2a.conv.weight' to the model key.
- """
- model_keys = sorted(model_state_dict.keys())
- weight_keys = sorted(weight_state_dict.keys())
- def match(a, b):
- if b.startswith('backbone.res5'):
- # In Faster RCNN, res5 pretrained weights have prefix of backbone,
- # however, the corresponding model weights have difficult prefix,
- # bbox_head.
- b = b[9:]
- return a == b or a.endswith("." + b)
- match_matrix = np.zeros([len(model_keys), len(weight_keys)])
- for i, m_k in enumerate(model_keys):
- for j, w_k in enumerate(weight_keys):
- if match(m_k, w_k):
- match_matrix[i, j] = len(w_k)
- max_id = match_matrix.argmax(1)
- max_len = match_matrix.max(1)
- max_id[max_len == 0] = -1
- load_id = set(max_id)
- load_id.discard(-1)
- not_load_weight_name = []
- for idx in range(len(weight_keys)):
- if idx not in load_id:
- not_load_weight_name.append(weight_keys[idx])
- if len(not_load_weight_name) > 0:
- logger.info('{} in pretrained weight is not used in the model, '
- 'and its will not be loaded'.format(not_load_weight_name))
- matched_keys = {}
- result_state_dict = {}
- for model_id, weight_id in enumerate(max_id):
- if weight_id == -1:
- continue
- model_key = model_keys[model_id]
- weight_key = weight_keys[weight_id]
- weight_value = weight_state_dict[weight_key]
- model_value_shape = list(model_state_dict[model_key].shape)
- if list(weight_value.shape) != model_value_shape:
- logger.info(
- 'The shape {} in pretrained weight {} is unmatched with '
- 'the shape {} in model {}. And the weight {} will not be '
- 'loaded'.format(weight_value.shape, weight_key,
- model_value_shape, model_key, weight_key))
- continue
- assert model_key not in result_state_dict
- result_state_dict[model_key] = weight_value
- if weight_key in matched_keys:
- raise ValueError('Ambiguity weight {} loaded, it matches at least '
- '{} and {} in the model'.format(
- weight_key, model_key, matched_keys[
- weight_key]))
- matched_keys[weight_key] = model_key
- return result_state_dict
- def load_pretrain_weight(model, pretrain_weight):
- if is_url(pretrain_weight):
- pretrain_weight = get_weights_path(pretrain_weight)
- path = _strip_postfix(pretrain_weight)
- if not (os.path.isdir(path) or os.path.isfile(path) or
- os.path.exists(path + '.pdparams')):
- raise ValueError("Model pretrain path `{}` does not exists. "
- "If you don't want to load pretrain model, "
- "please delete `pretrain_weights` field in "
- "config file.".format(path))
- model_dict = model.state_dict()
- weights_path = path + '.pdparams'
- param_state_dict = paddle.load(weights_path)
- param_state_dict = match_state_dict(model_dict, param_state_dict)
- for k, v in param_state_dict.items():
- if isinstance(v, np.ndarray):
- v = paddle.to_tensor(v)
- if model_dict[k].dtype != v.dtype:
- param_state_dict[k] = v.astype(model_dict[k].dtype)
- model.set_dict(param_state_dict)
- logger.info('Finish loading model weights: {}'.format(weights_path))
- def save_model(model,
- optimizer,
- save_dir,
- save_name,
- last_epoch,
- ema_model=None):
- """
- save model into disk.
- Args:
- model (dict): the model state_dict to save parameters.
- optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
- save optimizer states.
- save_dir (str): the directory to be saved.
- save_name (str): the path to be saved.
- last_epoch (int): the epoch index.
- ema_model (dict|None): the ema_model state_dict to save parameters.
- """
- if paddle.distributed.get_rank() != 0:
- return
- assert isinstance(model, dict), ("model is not a instance of dict, "
- "please call model.state_dict() to get.")
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- save_path = os.path.join(save_dir, save_name)
- # save model
- if ema_model is None:
- paddle.save(model, save_path + ".pdparams")
- else:
- assert isinstance(ema_model,
- dict), ("ema_model is not a instance of dict, "
- "please call model.state_dict() to get.")
- # Exchange model and ema_model to save
- paddle.save(ema_model, save_path + ".pdparams")
- paddle.save(model, save_path + ".pdema")
- # save optimizer
- state_dict = optimizer.state_dict()
- state_dict['last_epoch'] = last_epoch
- paddle.save(state_dict, save_path + ".pdopt")
- logger.info("Save checkpoint: {}".format(save_dir))
|