123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle.utils import try_import
- from ppdet.core.workspace import register, serializable
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- def print_prune_params(model):
- model_dict = model.state_dict()
- for key in model_dict.keys():
- weight_name = model_dict[key].name
- logger.info('Parameter name: {}, shape: {}'.format(
- weight_name, model_dict[key].shape))
- @register
- @serializable
- class Pruner(object):
- def __init__(self,
- criterion,
- pruned_params,
- pruned_ratios,
- print_params=False):
- super(Pruner, self).__init__()
- assert criterion in ['l1_norm', 'fpgm'], \
- "unsupported prune criterion: {}".format(criterion)
- self.criterion = criterion
- self.pruned_params = pruned_params
- self.pruned_ratios = pruned_ratios
- self.print_params = print_params
- def __call__(self, model):
- # FIXME: adapt to network graph when Training and inference are
- # inconsistent, now only supports prune inference network graph.
- model.eval()
- paddleslim = try_import('paddleslim')
- from paddleslim.analysis import dygraph_flops as flops
- input_spec = [{
- "image": paddle.ones(
- shape=[1, 3, 640, 640], dtype='float32'),
- "im_shape": paddle.full(
- [1, 2], 640, dtype='float32'),
- "scale_factor": paddle.ones(
- shape=[1, 2], dtype='float32')
- }]
- if self.print_params:
- print_prune_params(model)
- ori_flops = flops(model, input_spec) / (1000**3)
- logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
- if self.criterion == 'fpgm':
- pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
- elif self.criterion == 'l1_norm':
- pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)
- logger.info("pruned params: {}".format(self.pruned_params))
- pruned_ratios = [float(n) for n in self.pruned_ratios]
- ratios = {}
- for i, param in enumerate(self.pruned_params):
- ratios[param] = pruned_ratios[i]
- pruner.prune_vars(ratios, [0])
- pruned_flops = flops(model, input_spec) / (1000**3)
- logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
- pruned_flops, (ori_flops - pruned_flops) / ori_flops))
- return model
- @register
- @serializable
- class PrunerQAT(object):
- def __init__(self, criterion, pruned_params, pruned_ratios,
- print_prune_params, quant_config, print_qat_model):
- super(PrunerQAT, self).__init__()
- assert criterion in ['l1_norm', 'fpgm'], \
- "unsupported prune criterion: {}".format(criterion)
- # Pruner hyperparameter
- self.criterion = criterion
- self.pruned_params = pruned_params
- self.pruned_ratios = pruned_ratios
- self.print_prune_params = print_prune_params
- # QAT hyperparameter
- self.quant_config = quant_config
- self.print_qat_model = print_qat_model
- def __call__(self, model):
- # FIXME: adapt to network graph when Training and inference are
- # inconsistent, now only supports prune inference network graph.
- model.eval()
- paddleslim = try_import('paddleslim')
- from paddleslim.analysis import dygraph_flops as flops
- input_spec = [{
- "image": paddle.ones(
- shape=[1, 3, 640, 640], dtype='float32'),
- "im_shape": paddle.full(
- [1, 2], 640, dtype='float32'),
- "scale_factor": paddle.ones(
- shape=[1, 2], dtype='float32')
- }]
- if self.print_prune_params:
- print_prune_params(model)
- ori_flops = flops(model, input_spec) / 1000
- logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
- if self.criterion == 'fpgm':
- pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
- elif self.criterion == 'l1_norm':
- pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)
- logger.info("pruned params: {}".format(self.pruned_params))
- pruned_ratios = [float(n) for n in self.pruned_ratios]
- ratios = {}
- for i, param in enumerate(self.pruned_params):
- ratios[param] = pruned_ratios[i]
- pruner.prune_vars(ratios, [0])
- pruned_flops = flops(model, input_spec) / 1000
- logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
- pruned_flops, (ori_flops - pruned_flops) / ori_flops))
- self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config)
- self.quanter.quantize(model)
- if self.print_qat_model:
- logger.info("Quantized model:")
- logger.info(model)
- return model
- def save_quantized_model(self, layer, path, input_spec=None, **config):
- self.quanter.save_quantized_model(
- model=layer, path=path, input_spec=input_spec, **config)
|