123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # Modified from detrex (https://github.com/IDEA-Research/detrex)
- # Copyright 2022 The IDEA Authors. All rights reserved.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import copy
- import math
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ..bbox_utils import bbox_overlaps
- __all__ = [
- '_get_clones', 'bbox_overlaps', 'bbox_cxcywh_to_xyxy',
- 'bbox_xyxy_to_cxcywh', 'sigmoid_focal_loss', 'inverse_sigmoid',
- 'deformable_attention_core_func'
- ]
- def _get_clones(module, N):
- return nn.LayerList([copy.deepcopy(module) for _ in range(N)])
- def bbox_cxcywh_to_xyxy(x):
- cxcy, wh = paddle.split(x, 2, axis=-1)
- return paddle.concat([cxcy - 0.5 * wh, cxcy + 0.5 * wh], axis=-1)
- def bbox_xyxy_to_cxcywh(x):
- x1, y1, x2, y2 = x.split(4, axis=-1)
- return paddle.concat(
- [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)], axis=-1)
- def sigmoid_focal_loss(logit, label, normalizer=1.0, alpha=0.25, gamma=2.0):
- prob = F.sigmoid(logit)
- ce_loss = F.binary_cross_entropy_with_logits(logit, label, reduction="none")
- p_t = prob * label + (1 - prob) * (1 - label)
- loss = ce_loss * ((1 - p_t)**gamma)
- if alpha >= 0:
- alpha_t = alpha * label + (1 - alpha) * (1 - label)
- loss = alpha_t * loss
- return loss.mean(1).sum() / normalizer
- def inverse_sigmoid(x, eps=1e-6):
- x = x.clip(min=0., max=1.)
- return paddle.log(x / (1 - x + eps) + eps)
- def deformable_attention_core_func(value, value_spatial_shapes,
- value_level_start_index, sampling_locations,
- attention_weights):
- """
- Args:
- value (Tensor): [bs, value_length, n_head, c]
- value_spatial_shapes (Tensor): [n_levels, 2]
- value_level_start_index (Tensor): [n_levels]
- sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2]
- attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points]
- Returns:
- output (Tensor): [bs, Length_{query}, C]
- """
- bs, _, n_head, c = value.shape
- _, Len_q, _, n_levels, n_points, _ = sampling_locations.shape
- value_list = value.split(
- value_spatial_shapes.prod(1).split(n_levels), axis=1)
- sampling_grids = 2 * sampling_locations - 1
- sampling_value_list = []
- for level, (h, w) in enumerate(value_spatial_shapes):
- # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
- value_l_ = value_list[level].flatten(2).transpose(
- [0, 2, 1]).reshape([bs * n_head, c, h, w])
- # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
- sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(
- [0, 2, 1, 3, 4]).flatten(0, 1)
- # N_*M_, D_, Lq_, P_
- sampling_value_l_ = F.grid_sample(
- value_l_,
- sampling_grid_l_,
- mode='bilinear',
- padding_mode='zeros',
- align_corners=False)
- sampling_value_list.append(sampling_value_l_)
- # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_)
- attention_weights = attention_weights.transpose([0, 2, 1, 3, 4]).reshape(
- [bs * n_head, 1, Len_q, n_levels * n_points])
- output = (paddle.stack(
- sampling_value_list, axis=-2).flatten(-2) *
- attention_weights).sum(-1).reshape([bs, n_head * c, Len_q])
- return output.transpose([0, 2, 1])
- def get_valid_ratio(mask):
- _, H, W = paddle.shape(mask)
- valid_ratio_h = paddle.sum(mask[:, :, 0], 1) / H
- valid_ratio_w = paddle.sum(mask[:, 0, :], 1) / W
- # [b, 2]
- return paddle.stack([valid_ratio_w, valid_ratio_h], -1)
- def get_contrastive_denoising_training_group(targets,
- num_classes,
- num_queries,
- class_embed,
- num_denoising=100,
- label_noise_ratio=0.5,
- box_noise_scale=1.0):
- if num_denoising <= 0:
- return None, None, None, None
- num_gts = [len(t) for t in targets["gt_class"]]
- max_gt_num = max(num_gts)
- if max_gt_num == 0:
- return None, None, None, None
- num_group = num_denoising // max_gt_num
- num_group = 1 if num_group == 0 else num_group
- # pad gt to max_num of a batch
- bs = len(targets["gt_class"])
- input_query_class = paddle.full(
- [bs, max_gt_num], num_classes, dtype='int32')
- input_query_bbox = paddle.zeros([bs, max_gt_num, 4])
- pad_gt_mask = paddle.zeros([bs, max_gt_num])
- for i in range(bs):
- num_gt = num_gts[i]
- if num_gt > 0:
- input_query_class[i, :num_gt] = targets["gt_class"][i].squeeze(-1)
- input_query_bbox[i, :num_gt] = targets["gt_bbox"][i]
- pad_gt_mask[i, :num_gt] = 1
- # each group has positive and negative queries.
- input_query_class = input_query_class.tile([1, 2 * num_group])
- input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1])
- pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group])
- # positive and negative mask
- negative_gt_mask = paddle.zeros([bs, max_gt_num * 2, 1])
- negative_gt_mask[:, max_gt_num:] = 1
- negative_gt_mask = negative_gt_mask.tile([1, num_group, 1])
- positive_gt_mask = 1 - negative_gt_mask
- # contrastive denoising training positive index
- positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
- dn_positive_idx = paddle.nonzero(positive_gt_mask)[:, 1]
- dn_positive_idx = paddle.split(dn_positive_idx,
- [n * num_group for n in num_gts])
- # total denoising queries
- num_denoising = int(max_gt_num * 2 * num_group)
- if label_noise_ratio > 0:
- input_query_class = input_query_class.flatten()
- pad_gt_mask = pad_gt_mask.flatten()
- # half of bbox prob
- mask = paddle.rand(input_query_class.shape) < (label_noise_ratio * 0.5)
- chosen_idx = paddle.nonzero(mask * pad_gt_mask).squeeze(-1)
- # randomly put a new one here
- new_label = paddle.randint_like(
- chosen_idx, 0, num_classes, dtype=input_query_class.dtype)
- input_query_class.scatter_(chosen_idx, new_label)
- input_query_class.reshape_([bs, num_denoising])
- pad_gt_mask.reshape_([bs, num_denoising])
- if box_noise_scale > 0:
- known_bbox = bbox_cxcywh_to_xyxy(input_query_bbox)
- diff = paddle.tile(input_query_bbox[..., 2:] * 0.5,
- [1, 1, 2]) * box_noise_scale
- rand_sign = paddle.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
- rand_part = paddle.rand(input_query_bbox.shape)
- rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (
- 1 - negative_gt_mask)
- rand_part *= rand_sign
- known_bbox += rand_part * diff
- known_bbox.clip_(min=0.0, max=1.0)
- input_query_bbox = bbox_xyxy_to_cxcywh(known_bbox)
- input_query_bbox.clip_(min=0.0, max=1.0)
- class_embed = paddle.concat(
- [class_embed, paddle.zeros([1, class_embed.shape[-1]])])
- input_query_class = paddle.gather(
- class_embed, input_query_class.flatten(),
- axis=0).reshape([bs, num_denoising, -1])
- tgt_size = num_denoising + num_queries
- attn_mask = paddle.ones([tgt_size, tgt_size]) < 0
- # match query cannot see the reconstruct
- attn_mask[num_denoising:, :num_denoising] = True
- # reconstruct cannot see each other
- for i in range(num_group):
- if i == 0:
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), max_gt_num *
- 2 * (i + 1):num_denoising] = True
- if i == num_group - 1:
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), :max_gt_num *
- i * 2] = True
- else:
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), max_gt_num *
- 2 * (i + 1):num_denoising] = True
- attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), :max_gt_num *
- 2 * i] = True
- attn_mask = ~attn_mask
- dn_meta = {
- "dn_positive_idx": dn_positive_idx,
- "dn_num_group": num_group,
- "dn_num_split": [num_denoising, num_queries]
- }
- return input_query_class, input_query_bbox, attn_mask, dn_meta
- def get_sine_pos_embed(pos_tensor,
- num_pos_feats=128,
- temperature=10000,
- exchange_xy=True):
- """generate sine position embedding from a position tensor
- Args:
- pos_tensor (torch.Tensor): Shape as `(None, n)`.
- num_pos_feats (int): projected shape for each float in the tensor. Default: 128
- temperature (int): The temperature used for scaling
- the position embedding. Default: 10000.
- exchange_xy (bool, optional): exchange pos x and pos y. \
- For example, input tensor is `[x, y]`, the results will # noqa
- be `[pos(y), pos(x)]`. Defaults: True.
- Returns:
- torch.Tensor: Returned position embedding # noqa
- with shape `(None, n * num_pos_feats)`.
- """
- scale = 2. * math.pi
- dim_t = 2. * paddle.floor_divide(
- paddle.arange(num_pos_feats), paddle.to_tensor(2))
- dim_t = scale / temperature**(dim_t / num_pos_feats)
- def sine_func(x):
- x *= dim_t
- return paddle.stack(
- (x[:, :, 0::2].sin(), x[:, :, 1::2].cos()), axis=3).flatten(2)
- pos_res = [sine_func(x) for x in pos_tensor.split(pos_tensor.shape[-1], -1)]
- if exchange_xy:
- pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
- pos_res = paddle.concat(pos_res, axis=2)
- return pos_res
|