123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- from ..bbox_utils import bbox2delta, bbox_overlaps
- def rpn_anchor_target(anchors,
- gt_boxes,
- rpn_batch_size_per_im,
- rpn_positive_overlap,
- rpn_negative_overlap,
- rpn_fg_fraction,
- use_random=True,
- batch_size=1,
- ignore_thresh=-1,
- is_crowd=None,
- weights=[1., 1., 1., 1.],
- assign_on_cpu=False):
- tgt_labels = []
- tgt_bboxes = []
- tgt_deltas = []
- for i in range(batch_size):
- gt_bbox = gt_boxes[i]
- is_crowd_i = is_crowd[i] if is_crowd else None
- # Step1: match anchor and gt_bbox
- matches, match_labels = label_box(
- anchors, gt_bbox, rpn_positive_overlap, rpn_negative_overlap, True,
- ignore_thresh, is_crowd_i, assign_on_cpu)
- # Step2: sample anchor
- fg_inds, bg_inds = subsample_labels(match_labels, rpn_batch_size_per_im,
- rpn_fg_fraction, 0, use_random)
- # Fill with the ignore label (-1), then set positive and negative labels
- labels = paddle.full(match_labels.shape, -1, dtype='int32')
- if bg_inds.shape[0] > 0:
- labels = paddle.scatter(labels, bg_inds, paddle.zeros_like(bg_inds))
- if fg_inds.shape[0] > 0:
- labels = paddle.scatter(labels, fg_inds, paddle.ones_like(fg_inds))
- # Step3: make output
- if gt_bbox.shape[0] == 0:
- matched_gt_boxes = paddle.zeros([matches.shape[0], 4])
- tgt_delta = paddle.zeros([matches.shape[0], 4])
- else:
- matched_gt_boxes = paddle.gather(gt_bbox, matches)
- tgt_delta = bbox2delta(anchors, matched_gt_boxes, weights)
- matched_gt_boxes.stop_gradient = True
- tgt_delta.stop_gradient = True
- labels.stop_gradient = True
- tgt_labels.append(labels)
- tgt_bboxes.append(matched_gt_boxes)
- tgt_deltas.append(tgt_delta)
- return tgt_labels, tgt_bboxes, tgt_deltas
- def label_box(anchors,
- gt_boxes,
- positive_overlap,
- negative_overlap,
- allow_low_quality,
- ignore_thresh,
- is_crowd=None,
- assign_on_cpu=False):
- if assign_on_cpu:
- device = paddle.device.get_device()
- paddle.set_device("cpu")
- iou = bbox_overlaps(gt_boxes, anchors)
- paddle.set_device(device)
- else:
- iou = bbox_overlaps(gt_boxes, anchors)
- n_gt = gt_boxes.shape[0]
- if n_gt == 0 or is_crowd is None:
- n_gt_crowd = 0
- else:
- n_gt_crowd = paddle.nonzero(is_crowd).shape[0]
- if iou.shape[0] == 0 or n_gt_crowd == n_gt:
- # No truth, assign everything to background
- default_matches = paddle.full((iou.shape[1], ), 0, dtype='int64')
- default_match_labels = paddle.full((iou.shape[1], ), 0, dtype='int32')
- return default_matches, default_match_labels
- # if ignore_thresh > 0, remove anchor if it is closed to
- # one of the crowded ground-truth
- if n_gt_crowd > 0:
- N_a = anchors.shape[0]
- ones = paddle.ones([N_a])
- mask = is_crowd * ones
- if ignore_thresh > 0:
- crowd_iou = iou * mask
- valid = (paddle.sum((crowd_iou > ignore_thresh).cast('int32'),
- axis=0) > 0).cast('float32')
- iou = iou * (1 - valid) - valid
- # ignore the iou between anchor and crowded ground-truth
- iou = iou * (1 - mask) - mask
- matched_vals, matches = paddle.topk(iou, k=1, axis=0)
- match_labels = paddle.full(matches.shape, -1, dtype='int32')
- # set ignored anchor with iou = -1
- neg_cond = paddle.logical_and(matched_vals > -1,
- matched_vals < negative_overlap)
- match_labels = paddle.where(neg_cond,
- paddle.zeros_like(match_labels), match_labels)
- match_labels = paddle.where(matched_vals >= positive_overlap,
- paddle.ones_like(match_labels), match_labels)
- if allow_low_quality:
- highest_quality_foreach_gt = iou.max(axis=1, keepdim=True)
- pred_inds_with_highest_quality = paddle.logical_and(
- iou > 0, iou == highest_quality_foreach_gt).cast('int32').sum(
- 0, keepdim=True)
- match_labels = paddle.where(pred_inds_with_highest_quality > 0,
- paddle.ones_like(match_labels),
- match_labels)
- matches = matches.flatten()
- match_labels = match_labels.flatten()
- return matches, match_labels
- def subsample_labels(labels,
- num_samples,
- fg_fraction,
- bg_label=0,
- use_random=True):
- positive = paddle.nonzero(
- paddle.logical_and(labels != -1, labels != bg_label))
- negative = paddle.nonzero(labels == bg_label)
- fg_num = int(num_samples * fg_fraction)
- fg_num = min(positive.numel(), fg_num)
- bg_num = num_samples - fg_num
- bg_num = min(negative.numel(), bg_num)
- if fg_num == 0 and bg_num == 0:
- fg_inds = paddle.zeros([0], dtype='int32')
- bg_inds = paddle.zeros([0], dtype='int32')
- return fg_inds, bg_inds
- # randomly select positive and negative examples
- negative = negative.cast('int32').flatten()
- bg_perm = paddle.randperm(negative.numel(), dtype='int32')
- bg_perm = paddle.slice(bg_perm, axes=[0], starts=[0], ends=[bg_num])
- if use_random:
- bg_inds = paddle.gather(negative, bg_perm)
- else:
- bg_inds = paddle.slice(negative, axes=[0], starts=[0], ends=[bg_num])
- if fg_num == 0:
- fg_inds = paddle.zeros([0], dtype='int32')
- return fg_inds, bg_inds
- positive = positive.cast('int32').flatten()
- fg_perm = paddle.randperm(positive.numel(), dtype='int32')
- fg_perm = paddle.slice(fg_perm, axes=[0], starts=[0], ends=[fg_num])
- if use_random:
- fg_inds = paddle.gather(positive, fg_perm)
- else:
- fg_inds = paddle.slice(positive, axes=[0], starts=[0], ends=[fg_num])
- return fg_inds, bg_inds
- def generate_proposal_target(rpn_rois,
- gt_classes,
- gt_boxes,
- batch_size_per_im,
- fg_fraction,
- fg_thresh,
- bg_thresh,
- num_classes,
- ignore_thresh=-1.,
- is_crowd=None,
- use_random=True,
- is_cascade=False,
- cascade_iou=0.5,
- assign_on_cpu=False,
- add_gt_as_proposals=True):
- rois_with_gt = []
- tgt_labels = []
- tgt_bboxes = []
- tgt_gt_inds = []
- new_rois_num = []
- # In cascade rcnn, the threshold for foreground and background
- # is used from cascade_iou
- fg_thresh = cascade_iou if is_cascade else fg_thresh
- bg_thresh = cascade_iou if is_cascade else bg_thresh
- for i, rpn_roi in enumerate(rpn_rois):
- gt_bbox = gt_boxes[i]
- is_crowd_i = is_crowd[i] if is_crowd else None
- gt_class = paddle.squeeze(gt_classes[i], axis=-1)
- # Concat RoIs and gt boxes except cascade rcnn or none gt
- if add_gt_as_proposals and gt_bbox.shape[0] > 0:
- bbox = paddle.concat([rpn_roi, gt_bbox])
- else:
- bbox = rpn_roi
- # Step1: label bbox
- matches, match_labels = label_box(bbox, gt_bbox, fg_thresh, bg_thresh,
- False, ignore_thresh, is_crowd_i,
- assign_on_cpu)
- # Step2: sample bbox
- sampled_inds, sampled_gt_classes = sample_bbox(
- matches, match_labels, gt_class, batch_size_per_im, fg_fraction,
- num_classes, use_random, is_cascade)
- # Step3: make output
- rois_per_image = bbox if is_cascade else paddle.gather(bbox,
- sampled_inds)
- sampled_gt_ind = matches if is_cascade else paddle.gather(matches,
- sampled_inds)
- if gt_bbox.shape[0] > 0:
- sampled_bbox = paddle.gather(gt_bbox, sampled_gt_ind)
- else:
- num = rois_per_image.shape[0]
- sampled_bbox = paddle.zeros([num, 4], dtype='float32')
- rois_per_image.stop_gradient = True
- sampled_gt_ind.stop_gradient = True
- sampled_bbox.stop_gradient = True
- tgt_labels.append(sampled_gt_classes)
- tgt_bboxes.append(sampled_bbox)
- rois_with_gt.append(rois_per_image)
- tgt_gt_inds.append(sampled_gt_ind)
- new_rois_num.append(paddle.shape(sampled_inds)[0])
- new_rois_num = paddle.concat(new_rois_num)
- return rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num
- def sample_bbox(matches,
- match_labels,
- gt_classes,
- batch_size_per_im,
- fg_fraction,
- num_classes,
- use_random=True,
- is_cascade=False):
- n_gt = gt_classes.shape[0]
- if n_gt == 0:
- # No truth, assign everything to background
- gt_classes = paddle.ones(matches.shape, dtype='int32') * num_classes
- #return matches, match_labels + num_classes
- else:
- gt_classes = paddle.gather(gt_classes, matches)
- gt_classes = paddle.where(match_labels == 0,
- paddle.ones_like(gt_classes) * num_classes,
- gt_classes)
- gt_classes = paddle.where(match_labels == -1,
- paddle.ones_like(gt_classes) * -1, gt_classes)
- if is_cascade:
- index = paddle.arange(matches.shape[0])
- return index, gt_classes
- rois_per_image = int(batch_size_per_im)
- fg_inds, bg_inds = subsample_labels(gt_classes, rois_per_image, fg_fraction,
- num_classes, use_random)
- if fg_inds.shape[0] == 0 and bg_inds.shape[0] == 0:
- # fake output labeled with -1 when all boxes are neither
- # foreground nor background
- sampled_inds = paddle.zeros([1], dtype='int32')
- else:
- sampled_inds = paddle.concat([fg_inds, bg_inds])
- sampled_gt_classes = paddle.gather(gt_classes, sampled_inds)
- return sampled_inds, sampled_gt_classes
- def polygons_to_mask(polygons, height, width):
- """
- Convert the polygons to mask format
- Args:
- polygons (list[ndarray]): each array has shape (Nx2,)
- height (int): mask height
- width (int): mask width
- Returns:
- ndarray: a bool mask of shape (height, width)
- """
- import pycocotools.mask as mask_util
- assert len(polygons) > 0, "COCOAPI does not support empty polygons"
- rles = mask_util.frPyObjects(polygons, height, width)
- rle = mask_util.merge(rles)
- return mask_util.decode(rle).astype(np.bool_)
- def rasterize_polygons_within_box(poly, box, resolution):
- w, h = box[2] - box[0], box[3] - box[1]
- polygons = [np.asarray(p, dtype=np.float64) for p in poly]
- for p in polygons:
- p[0::2] = p[0::2] - box[0]
- p[1::2] = p[1::2] - box[1]
- ratio_h = resolution / max(h, 0.1)
- ratio_w = resolution / max(w, 0.1)
- if ratio_h == ratio_w:
- for p in polygons:
- p *= ratio_h
- else:
- for p in polygons:
- p[0::2] *= ratio_w
- p[1::2] *= ratio_h
- # 3. Rasterize the polygons with coco api
- mask = polygons_to_mask(polygons, resolution, resolution)
- mask = paddle.to_tensor(mask, dtype='int32')
- return mask
- def generate_mask_target(gt_segms, rois, labels_int32, sampled_gt_inds,
- num_classes, resolution):
- mask_rois = []
- mask_rois_num = []
- tgt_masks = []
- tgt_classes = []
- mask_index = []
- tgt_weights = []
- for k in range(len(rois)):
- labels_per_im = labels_int32[k]
- # select rois labeled with foreground
- fg_inds = paddle.nonzero(
- paddle.logical_and(labels_per_im != -1, labels_per_im !=
- num_classes))
- has_fg = True
- # generate fake roi if foreground is empty
- if fg_inds.numel() == 0:
- has_fg = False
- fg_inds = paddle.ones([1, 1], dtype='int64')
- inds_per_im = sampled_gt_inds[k]
- inds_per_im = paddle.gather(inds_per_im, fg_inds)
- rois_per_im = rois[k]
- fg_rois = paddle.gather(rois_per_im, fg_inds)
- # Copy the foreground roi to cpu
- # to generate mask target with ground-truth
- boxes = fg_rois.numpy()
- gt_segms_per_im = gt_segms[k]
- new_segm = []
- inds_per_im = inds_per_im.numpy()
- if len(gt_segms_per_im) > 0:
- for i in inds_per_im:
- new_segm.append(gt_segms_per_im[i])
- fg_inds_new = fg_inds.reshape([-1]).numpy()
- results = []
- if len(gt_segms_per_im) > 0:
- for j in range(fg_inds_new.shape[0]):
- results.append(
- rasterize_polygons_within_box(new_segm[j], boxes[j],
- resolution))
- else:
- results.append(paddle.ones([resolution, resolution], dtype='int32'))
- fg_classes = paddle.gather(labels_per_im, fg_inds)
- weight = paddle.ones([fg_rois.shape[0]], dtype='float32')
- if not has_fg:
- # now all sampled classes are background
- # which will cause error in loss calculation,
- # make fake classes with weight of 0.
- fg_classes = paddle.zeros([1], dtype='int32')
- weight = weight - 1
- tgt_mask = paddle.stack(results)
- tgt_mask.stop_gradient = True
- fg_rois.stop_gradient = True
- mask_index.append(fg_inds)
- mask_rois.append(fg_rois)
- mask_rois_num.append(paddle.shape(fg_rois)[0])
- tgt_classes.append(fg_classes)
- tgt_masks.append(tgt_mask)
- tgt_weights.append(weight)
- mask_index = paddle.concat(mask_index)
- mask_rois_num = paddle.concat(mask_rois_num)
- tgt_classes = paddle.concat(tgt_classes, axis=0)
- tgt_masks = paddle.concat(tgt_masks, axis=0)
- tgt_weights = paddle.concat(tgt_weights, axis=0)
- return mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights
- def libra_sample_pos(max_overlaps, max_classes, pos_inds, num_expected):
- if len(pos_inds) <= num_expected:
- return pos_inds
- else:
- unique_gt_inds = np.unique(max_classes[pos_inds])
- num_gts = len(unique_gt_inds)
- num_per_gt = int(round(num_expected / float(num_gts)) + 1)
- sampled_inds = []
- for i in unique_gt_inds:
- inds = np.nonzero(max_classes == i)[0]
- before_len = len(inds)
- inds = list(set(inds) & set(pos_inds))
- after_len = len(inds)
- if len(inds) > num_per_gt:
- inds = np.random.choice(inds, size=num_per_gt, replace=False)
- sampled_inds.extend(list(inds)) # combine as a new sampler
- if len(sampled_inds) < num_expected:
- num_extra = num_expected - len(sampled_inds)
- extra_inds = np.array(list(set(pos_inds) - set(sampled_inds)))
- assert len(sampled_inds) + len(extra_inds) == len(pos_inds), \
- "sum of sampled_inds({}) and extra_inds({}) length must be equal with pos_inds({})!".format(
- len(sampled_inds), len(extra_inds), len(pos_inds))
- if len(extra_inds) > num_extra:
- extra_inds = np.random.choice(
- extra_inds, size=num_extra, replace=False)
- sampled_inds.extend(extra_inds.tolist())
- elif len(sampled_inds) > num_expected:
- sampled_inds = np.random.choice(
- sampled_inds, size=num_expected, replace=False)
- return paddle.to_tensor(sampled_inds)
- def libra_sample_via_interval(max_overlaps, full_set, num_expected, floor_thr,
- num_bins, bg_thresh):
- max_iou = max_overlaps.max()
- iou_interval = (max_iou - floor_thr) / num_bins
- per_num_expected = int(num_expected / num_bins)
- sampled_inds = []
- for i in range(num_bins):
- start_iou = floor_thr + i * iou_interval
- end_iou = floor_thr + (i + 1) * iou_interval
- tmp_set = set(
- np.where(
- np.logical_and(max_overlaps >= start_iou, max_overlaps <
- end_iou))[0])
- tmp_inds = list(tmp_set & full_set)
- if len(tmp_inds) > per_num_expected:
- tmp_sampled_set = np.random.choice(
- tmp_inds, size=per_num_expected, replace=False)
- else:
- tmp_sampled_set = np.array(tmp_inds, dtype=np.int32)
- sampled_inds.append(tmp_sampled_set)
- sampled_inds = np.concatenate(sampled_inds)
- if len(sampled_inds) < num_expected:
- num_extra = num_expected - len(sampled_inds)
- extra_inds = np.array(list(full_set - set(sampled_inds)))
- assert len(sampled_inds) + len(extra_inds) == len(full_set), \
- "sum of sampled_inds({}) and extra_inds({}) length must be equal with full_set({})!".format(
- len(sampled_inds), len(extra_inds), len(full_set))
- if len(extra_inds) > num_extra:
- extra_inds = np.random.choice(extra_inds, num_extra, replace=False)
- sampled_inds = np.concatenate([sampled_inds, extra_inds])
- return sampled_inds
- def libra_sample_neg(max_overlaps,
- max_classes,
- neg_inds,
- num_expected,
- floor_thr=-1,
- floor_fraction=0,
- num_bins=3,
- bg_thresh=0.5):
- if len(neg_inds) <= num_expected:
- return neg_inds
- else:
- # balance sampling for negative samples
- neg_set = set(neg_inds.tolist())
- if floor_thr > 0:
- floor_set = set(
- np.where(
- np.logical_and(max_overlaps >= 0, max_overlaps < floor_thr))
- [0])
- iou_sampling_set = set(np.where(max_overlaps >= floor_thr)[0])
- elif floor_thr == 0:
- floor_set = set(np.where(max_overlaps == 0)[0])
- iou_sampling_set = set(np.where(max_overlaps > floor_thr)[0])
- else:
- floor_set = set()
- iou_sampling_set = set(np.where(max_overlaps > floor_thr)[0])
- floor_thr = 0
- floor_neg_inds = list(floor_set & neg_set)
- iou_sampling_neg_inds = list(iou_sampling_set & neg_set)
- num_expected_iou_sampling = int(num_expected * (1 - floor_fraction))
- if len(iou_sampling_neg_inds) > num_expected_iou_sampling:
- if num_bins >= 2:
- iou_sampled_inds = libra_sample_via_interval(
- max_overlaps,
- set(iou_sampling_neg_inds), num_expected_iou_sampling,
- floor_thr, num_bins, bg_thresh)
- else:
- iou_sampled_inds = np.random.choice(
- iou_sampling_neg_inds,
- size=num_expected_iou_sampling,
- replace=False)
- else:
- iou_sampled_inds = np.array(iou_sampling_neg_inds, dtype=np.int32)
- num_expected_floor = num_expected - len(iou_sampled_inds)
- if len(floor_neg_inds) > num_expected_floor:
- sampled_floor_inds = np.random.choice(
- floor_neg_inds, size=num_expected_floor, replace=False)
- else:
- sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int32)
- sampled_inds = np.concatenate((sampled_floor_inds, iou_sampled_inds))
- if len(sampled_inds) < num_expected:
- num_extra = num_expected - len(sampled_inds)
- extra_inds = np.array(list(neg_set - set(sampled_inds)))
- if len(extra_inds) > num_extra:
- extra_inds = np.random.choice(
- extra_inds, size=num_extra, replace=False)
- sampled_inds = np.concatenate((sampled_inds, extra_inds))
- return paddle.to_tensor(sampled_inds)
- def libra_label_box(anchors, gt_boxes, gt_classes, positive_overlap,
- negative_overlap, num_classes):
- # TODO: use paddle API to speed up
- gt_classes = gt_classes.numpy()
- gt_overlaps = np.zeros((anchors.shape[0], num_classes))
- matches = np.zeros((anchors.shape[0]), dtype=np.int32)
- if len(gt_boxes) > 0:
- proposal_to_gt_overlaps = bbox_overlaps(anchors, gt_boxes).numpy()
- overlaps_argmax = proposal_to_gt_overlaps.argmax(axis=1)
- overlaps_max = proposal_to_gt_overlaps.max(axis=1)
- # Boxes which with non-zero overlap with gt boxes
- overlapped_boxes_ind = np.where(overlaps_max > 0)[0]
- overlapped_boxes_gt_classes = gt_classes[overlaps_argmax[
- overlapped_boxes_ind]]
- for idx in range(len(overlapped_boxes_ind)):
- gt_overlaps[overlapped_boxes_ind[idx], overlapped_boxes_gt_classes[
- idx]] = overlaps_max[overlapped_boxes_ind[idx]]
- matches[overlapped_boxes_ind[idx]] = overlaps_argmax[
- overlapped_boxes_ind[idx]]
- gt_overlaps = paddle.to_tensor(gt_overlaps)
- matches = paddle.to_tensor(matches)
- matched_vals = paddle.max(gt_overlaps, axis=1)
- match_labels = paddle.full(matches.shape, -1, dtype='int32')
- match_labels = paddle.where(matched_vals < negative_overlap,
- paddle.zeros_like(match_labels), match_labels)
- match_labels = paddle.where(matched_vals >= positive_overlap,
- paddle.ones_like(match_labels), match_labels)
- return matches, match_labels, matched_vals
- def libra_sample_bbox(matches,
- match_labels,
- matched_vals,
- gt_classes,
- batch_size_per_im,
- num_classes,
- fg_fraction,
- fg_thresh,
- bg_thresh,
- num_bins,
- use_random=True,
- is_cascade_rcnn=False):
- rois_per_image = int(batch_size_per_im)
- fg_rois_per_im = int(np.round(fg_fraction * rois_per_image))
- bg_rois_per_im = rois_per_image - fg_rois_per_im
- if is_cascade_rcnn:
- fg_inds = paddle.nonzero(matched_vals >= fg_thresh)
- bg_inds = paddle.nonzero(matched_vals < bg_thresh)
- else:
- matched_vals_np = matched_vals.numpy()
- match_labels_np = match_labels.numpy()
- # sample fg
- fg_inds = paddle.nonzero(matched_vals >= fg_thresh).flatten()
- fg_nums = int(np.minimum(fg_rois_per_im, fg_inds.shape[0]))
- if (fg_inds.shape[0] > fg_nums) and use_random:
- fg_inds = libra_sample_pos(matched_vals_np, match_labels_np,
- fg_inds.numpy(), fg_rois_per_im)
- fg_inds = fg_inds[:fg_nums]
- # sample bg
- bg_inds = paddle.nonzero(matched_vals < bg_thresh).flatten()
- bg_nums = int(np.minimum(rois_per_image - fg_nums, bg_inds.shape[0]))
- if (bg_inds.shape[0] > bg_nums) and use_random:
- bg_inds = libra_sample_neg(
- matched_vals_np,
- match_labels_np,
- bg_inds.numpy(),
- bg_rois_per_im,
- num_bins=num_bins,
- bg_thresh=bg_thresh)
- bg_inds = bg_inds[:bg_nums]
- sampled_inds = paddle.concat([fg_inds, bg_inds])
- gt_classes = paddle.gather(gt_classes, matches)
- gt_classes = paddle.where(match_labels == 0,
- paddle.ones_like(gt_classes) * num_classes,
- gt_classes)
- gt_classes = paddle.where(match_labels == -1,
- paddle.ones_like(gt_classes) * -1, gt_classes)
- sampled_gt_classes = paddle.gather(gt_classes, sampled_inds)
- return sampled_inds, sampled_gt_classes
- def libra_generate_proposal_target(rpn_rois,
- gt_classes,
- gt_boxes,
- batch_size_per_im,
- fg_fraction,
- fg_thresh,
- bg_thresh,
- num_classes,
- use_random=True,
- is_cascade_rcnn=False,
- max_overlaps=None,
- num_bins=3):
- rois_with_gt = []
- tgt_labels = []
- tgt_bboxes = []
- sampled_max_overlaps = []
- tgt_gt_inds = []
- new_rois_num = []
- for i, rpn_roi in enumerate(rpn_rois):
- max_overlap = max_overlaps[i] if is_cascade_rcnn else None
- gt_bbox = gt_boxes[i]
- gt_class = paddle.squeeze(gt_classes[i], axis=-1)
- if is_cascade_rcnn:
- rpn_roi = filter_roi(rpn_roi, max_overlap)
- bbox = paddle.concat([rpn_roi, gt_bbox])
- # Step1: label bbox
- matches, match_labels, matched_vals = libra_label_box(
- bbox, gt_bbox, gt_class, fg_thresh, bg_thresh, num_classes)
- # Step2: sample bbox
- sampled_inds, sampled_gt_classes = libra_sample_bbox(
- matches, match_labels, matched_vals, gt_class, batch_size_per_im,
- num_classes, fg_fraction, fg_thresh, bg_thresh, num_bins,
- use_random, is_cascade_rcnn)
- # Step3: make output
- rois_per_image = paddle.gather(bbox, sampled_inds)
- sampled_gt_ind = paddle.gather(matches, sampled_inds)
- sampled_bbox = paddle.gather(gt_bbox, sampled_gt_ind)
- sampled_overlap = paddle.gather(matched_vals, sampled_inds)
- rois_per_image.stop_gradient = True
- sampled_gt_ind.stop_gradient = True
- sampled_bbox.stop_gradient = True
- sampled_overlap.stop_gradient = True
- tgt_labels.append(sampled_gt_classes)
- tgt_bboxes.append(sampled_bbox)
- rois_with_gt.append(rois_per_image)
- sampled_max_overlaps.append(sampled_overlap)
- tgt_gt_inds.append(sampled_gt_ind)
- new_rois_num.append(paddle.shape(sampled_inds)[0])
- new_rois_num = paddle.concat(new_rois_num)
- # rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num
- return rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num
|