123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
- """
- import numpy as np
- from collections import defaultdict
- from collections import deque, OrderedDict
- from ..matching import jde_matching as matching
- from ppdet.core.workspace import register, serializable
- import warnings
- warnings.filterwarnings("ignore")
- __all__ = [
- 'TrackState',
- 'BaseTrack',
- 'STrack',
- 'joint_stracks',
- 'sub_stracks',
- 'remove_duplicate_stracks',
- ]
- class TrackState(object):
- New = 0
- Tracked = 1
- Lost = 2
- Removed = 3
- @register
- @serializable
- class BaseTrack(object):
- _count_dict = defaultdict(int) # support single class and multi classes
- track_id = 0
- is_activated = False
- state = TrackState.New
- history = OrderedDict()
- features = []
- curr_feat = None
- score = 0
- start_frame = 0
- frame_id = 0
- time_since_update = 0
- # multi-camera
- location = (np.inf, np.inf)
- @property
- def end_frame(self):
- return self.frame_id
- @staticmethod
- def next_id(cls_id):
- BaseTrack._count_dict[cls_id] += 1
- return BaseTrack._count_dict[cls_id]
- # @even: reset track id
- @staticmethod
- def init_count(num_classes):
- """
- Initiate _count for all object classes
- :param num_classes:
- """
- for cls_id in range(num_classes):
- BaseTrack._count_dict[cls_id] = 0
- @staticmethod
- def reset_track_count(cls_id):
- BaseTrack._count_dict[cls_id] = 0
- def activate(self, *args):
- raise NotImplementedError
- def predict(self):
- raise NotImplementedError
- def update(self, *args, **kwargs):
- raise NotImplementedError
- def mark_lost(self):
- self.state = TrackState.Lost
- def mark_removed(self):
- self.state = TrackState.Removed
- @register
- @serializable
- class STrack(BaseTrack):
- def __init__(self, tlwh, score, cls_id, buff_size=30, temp_feat=None):
- # wait activate
- self._tlwh = np.asarray(tlwh, dtype=np.float32)
- self.score = score
- self.cls_id = cls_id
- self.track_len = 0
- self.kalman_filter = None
- self.mean, self.covariance = None, None
- self.is_activated = False
- self.use_reid = True if temp_feat is not None else False
- if self.use_reid:
- self.smooth_feat = None
- self.update_features(temp_feat)
- self.features = deque([], maxlen=buff_size)
- self.alpha = 0.9
- def update_features(self, feat):
- # L2 normalizing, this function has no use for BYTETracker
- feat /= np.linalg.norm(feat)
- self.curr_feat = feat
- if self.smooth_feat is None:
- self.smooth_feat = feat
- else:
- self.smooth_feat = self.alpha * self.smooth_feat + (1.0 - self.alpha
- ) * feat
- self.features.append(feat)
- self.smooth_feat /= np.linalg.norm(self.smooth_feat)
- def predict(self):
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state,
- self.covariance)
- @staticmethod
- def multi_predict(tracks, kalman_filter):
- if len(tracks) > 0:
- multi_mean = np.asarray([track.mean.copy() for track in tracks])
- multi_covariance = np.asarray(
- [track.covariance for track in tracks])
- for i, st in enumerate(tracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][7] = 0
- multi_mean, multi_covariance = kalman_filter.multi_predict(
- multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- tracks[i].mean = mean
- tracks[i].covariance = cov
- @staticmethod
- def multi_gmc(stracks, H=np.eye(2, 3)):
- if len(stracks) > 0:
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- R = H[:2, :2]
- R8x8 = np.kron(np.eye(4, dtype=float), R)
- t = H[:2, 2]
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- mean = R8x8.dot(mean)
- mean[:2] += t
- cov = R8x8.dot(cov).dot(R8x8.transpose())
- stracks[i].mean = mean
- stracks[i].covariance = cov
- def reset_track_id(self):
- self.reset_track_count(self.cls_id)
- def activate(self, kalman_filter, frame_id):
- """Start a new track"""
- self.kalman_filter = kalman_filter
- # update track id for the object class
- self.track_id = self.next_id(self.cls_id)
- self.mean, self.covariance = self.kalman_filter.initiate(
- self.tlwh_to_xyah(self._tlwh))
- self.track_len = 0
- self.state = TrackState.Tracked # set flag 'tracked'
- if frame_id == 1: # to record the first frame's detection result
- self.is_activated = True
- self.frame_id = frame_id
- self.start_frame = frame_id
- def re_activate(self, new_track, frame_id, new_id=False):
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh))
- if self.use_reid:
- self.update_features(new_track.curr_feat)
- self.track_len = 0
- self.state = TrackState.Tracked
- self.is_activated = True
- self.frame_id = frame_id
- if new_id: # update track id for the object class
- self.track_id = self.next_id(self.cls_id)
- def update(self, new_track, frame_id, update_feature=True):
- self.frame_id = frame_id
- self.track_len += 1
- new_tlwh = new_track.tlwh
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
- self.state = TrackState.Tracked # set flag 'tracked'
- self.is_activated = True # set flag 'activated'
- self.score = new_track.score
- if update_feature and self.use_reid:
- self.update_features(new_track.curr_feat)
- @property
- def tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- """
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
- @property
- def tlbr(self):
- """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
- `(top left, bottom right)`.
- """
- ret = self.tlwh.copy()
- ret[2:] += ret[:2]
- return ret
- @staticmethod
- def tlwh_to_xyah(tlwh):
- """Convert bounding box to format `(center x, center y, aspect ratio,
- height)`, where the aspect ratio is `width / height`.
- """
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- ret[2] /= ret[3]
- return ret
- def to_xyah(self):
- return self.tlwh_to_xyah(self.tlwh)
- @staticmethod
- def tlbr_to_tlwh(tlbr):
- ret = np.asarray(tlbr).copy()
- ret[2:] -= ret[:2]
- return ret
- @staticmethod
- def tlwh_to_tlbr(tlwh):
- ret = np.asarray(tlwh).copy()
- ret[2:] += ret[:2]
- return ret
- def __repr__(self):
- return 'OT_({}-{})_({}-{})'.format(self.cls_id, self.track_id,
- self.start_frame, self.end_frame)
- def joint_stracks(tlista, tlistb):
- exists = {}
- res = []
- for t in tlista:
- exists[t.track_id] = 1
- res.append(t)
- for t in tlistb:
- tid = t.track_id
- if not exists.get(tid, 0):
- exists[tid] = 1
- res.append(t)
- return res
- def sub_stracks(tlista, tlistb):
- stracks = {}
- for t in tlista:
- stracks[t.track_id] = t
- for t in tlistb:
- tid = t.track_id
- if stracks.get(tid, 0):
- del stracks[tid]
- return list(stracks.values())
- def remove_duplicate_stracks(stracksa, stracksb):
- pdist = matching.iou_distance(stracksa, stracksb)
- pairs = np.where(pdist < 0.15)
- dupa, dupb = list(), list()
- for p, q in zip(*pairs):
- timep = stracksa[p].frame_id - stracksa[p].start_frame
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
- if timep > timeq:
- dupb.append(q)
- else:
- dupa.append(p)
- resa = [t for i, t in enumerate(stracksa) if not i in dupa]
- resb = [t for i, t in enumerate(stracksb) if not i in dupb]
- return resa, resb
|