12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- import numpy as np
- from ppdet.core.workspace import register
- __all__ = ['COTLoss']
- @register
- class COTLoss(nn.Layer):
- __shared__ = ['num_classes']
- def __init__(self,
- num_classes=80,
- cot_scale=1,
- cot_lambda=1):
- super(COTLoss, self).__init__()
- self.cot_scale = cot_scale
- self.cot_lambda = cot_lambda
- self.num_classes = num_classes
-
- def forward(self, scores, targets, cot_relation):
- cls_name = 'loss_bbox_cls_cot'
- loss_bbox = {}
- tgt_labels, tgt_bboxes, tgt_gt_inds = targets
- tgt_labels = paddle.concat(tgt_labels) if len(
- tgt_labels) > 1 else tgt_labels[0]
- mask = (tgt_labels < self.num_classes)
- valid_inds = paddle.nonzero(tgt_labels >= 0).flatten()
- if valid_inds.shape[0] == 0:
- loss_bbox[cls_name] = paddle.zeros([1], dtype='float32')
- else:
- tgt_labels = tgt_labels.cast('int64')
- valid_cot_targets = []
- for i in range(tgt_labels.shape[0]):
- train_label = tgt_labels[i]
- if train_label < self.num_classes:
- valid_cot_targets.append(cot_relation[train_label])
- coco_targets = paddle.to_tensor(valid_cot_targets)
- coco_targets.stop_gradient = True
- coco_loss = - coco_targets * F.log_softmax(scores[mask][:, :-1] * self.cot_scale)
- loss_bbox[cls_name] = self.cot_lambda * paddle.mean(paddle.sum(coco_loss, axis=-1))
- return loss_bbox
|