123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from paddle.regularizer import L2Decay
- from paddle import ParamAttr
- from ..layers import AnchorGeneratorSSD
- from ..cls_utils import _get_class_default_kwargs
- class SepConvLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=3,
- padding=1,
- conv_decay=0.):
- super(SepConvLayer, self).__init__()
- self.dw_conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=kernel_size,
- stride=1,
- padding=padding,
- groups=in_channels,
- weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
- bias_attr=False)
- self.bn = nn.BatchNorm2D(
- in_channels,
- weight_attr=ParamAttr(regularizer=L2Decay(0.)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.)))
- self.pw_conv = nn.Conv2D(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
- bias_attr=False)
- def forward(self, x):
- x = self.dw_conv(x)
- x = F.relu6(self.bn(x))
- x = self.pw_conv(x)
- return x
- class SSDExtraHead(nn.Layer):
- def __init__(self,
- in_channels=256,
- out_channels=([256, 512], [256, 512], [128, 256], [128, 256],
- [128, 256]),
- strides=(2, 2, 2, 1, 1),
- paddings=(1, 1, 1, 0, 0)):
- super(SSDExtraHead, self).__init__()
- self.convs = nn.LayerList()
- for out_channel, stride, padding in zip(out_channels, strides,
- paddings):
- self.convs.append(
- self._make_layers(in_channels, out_channel[0], out_channel[1],
- stride, padding))
- in_channels = out_channel[-1]
- def _make_layers(self, c_in, c_hidden, c_out, stride_3x3, padding_3x3):
- return nn.Sequential(
- nn.Conv2D(c_in, c_hidden, 1),
- nn.ReLU(),
- nn.Conv2D(c_hidden, c_out, 3, stride_3x3, padding_3x3), nn.ReLU())
- def forward(self, x):
- out = [x]
- for conv_layer in self.convs:
- out.append(conv_layer(out[-1]))
- return out
- @register
- class SSDHead(nn.Layer):
- """
- SSDHead
- Args:
- num_classes (int): Number of classes
- in_channels (list): Number of channels per input feature
- anchor_generator (dict): Configuration of 'AnchorGeneratorSSD' instance
- kernel_size (int): Conv kernel size
- padding (int): Conv padding
- use_sepconv (bool): Use SepConvLayer if true
- conv_decay (float): Conv regularization coeff
- loss (object): 'SSDLoss' instance
- use_extra_head (bool): If use ResNet34 as baskbone, you should set `use_extra_head`=True
- """
- __shared__ = ['num_classes']
- __inject__ = ['anchor_generator', 'loss']
- def __init__(self,
- num_classes=80,
- in_channels=(512, 1024, 512, 256, 256, 256),
- anchor_generator=_get_class_default_kwargs(AnchorGeneratorSSD),
- kernel_size=3,
- padding=1,
- use_sepconv=False,
- conv_decay=0.,
- loss='SSDLoss',
- use_extra_head=False):
- super(SSDHead, self).__init__()
- # add background class
- self.num_classes = num_classes + 1
- self.in_channels = in_channels
- self.anchor_generator = anchor_generator
- self.loss = loss
- self.use_extra_head = use_extra_head
- if self.use_extra_head:
- self.ssd_extra_head = SSDExtraHead()
- self.in_channels = [256, 512, 512, 256, 256, 256]
- if isinstance(anchor_generator, dict):
- self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
- self.num_priors = self.anchor_generator.num_priors
- self.box_convs = []
- self.score_convs = []
- for i, num_prior in enumerate(self.num_priors):
- box_conv_name = "boxes{}".format(i)
- if not use_sepconv:
- box_conv = self.add_sublayer(
- box_conv_name,
- nn.Conv2D(
- in_channels=self.in_channels[i],
- out_channels=num_prior * 4,
- kernel_size=kernel_size,
- padding=padding))
- else:
- box_conv = self.add_sublayer(
- box_conv_name,
- SepConvLayer(
- in_channels=self.in_channels[i],
- out_channels=num_prior * 4,
- kernel_size=kernel_size,
- padding=padding,
- conv_decay=conv_decay))
- self.box_convs.append(box_conv)
- score_conv_name = "scores{}".format(i)
- if not use_sepconv:
- score_conv = self.add_sublayer(
- score_conv_name,
- nn.Conv2D(
- in_channels=self.in_channels[i],
- out_channels=num_prior * self.num_classes,
- kernel_size=kernel_size,
- padding=padding))
- else:
- score_conv = self.add_sublayer(
- score_conv_name,
- SepConvLayer(
- in_channels=self.in_channels[i],
- out_channels=num_prior * self.num_classes,
- kernel_size=kernel_size,
- padding=padding,
- conv_decay=conv_decay))
- self.score_convs.append(score_conv)
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- def forward(self, feats, image, gt_bbox=None, gt_class=None):
- if self.use_extra_head:
- assert len(feats) == 1, \
- ("If you set use_extra_head=True, backbone feature "
- "list length should be 1.")
- feats = self.ssd_extra_head(feats[0])
- box_preds = []
- cls_scores = []
- for feat, box_conv, score_conv in zip(feats, self.box_convs,
- self.score_convs):
- box_pred = box_conv(feat)
- box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
- box_pred = paddle.reshape(box_pred, [0, -1, 4])
- box_preds.append(box_pred)
- cls_score = score_conv(feat)
- cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
- cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
- cls_scores.append(cls_score)
- prior_boxes = self.anchor_generator(feats, image)
- if self.training:
- return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
- prior_boxes)
- else:
- return (box_preds, cls_scores), prior_boxes
- def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
- return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)
|