123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/models/anchor_heads_rotated/s2anet_head.py
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import Normal, Constant
- from ppdet.core.workspace import register
- from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
- from ppdet.modeling.proposal_generator.anchor_generator import S2ANetAnchorGenerator
- from ppdet.modeling.layers import AlignConv
- from ..cls_utils import _get_class_default_kwargs
- import numpy as np
- @register
- class S2ANetHead(nn.Layer):
- """
- S2Anet head
- Args:
- stacked_convs (int): number of stacked_convs
- feat_in (int): input channels of feat
- feat_out (int): output channels of feat
- num_classes (int): num_classes
- anchor_strides (list): stride of anchors
- anchor_scales (list): scale of anchors
- anchor_ratios (list): ratios of anchors
- target_means (list): target_means
- target_stds (list): target_stds
- align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
- align_conv_size (int): kernel size of align_conv
- use_sigmoid_cls (bool): use sigmoid_cls or not
- reg_loss_weight (list): loss weight for regression
- """
- __shared__ = ['num_classes']
- __inject__ = ['anchor_assign', 'nms']
- def __init__(self,
- stacked_convs=2,
- feat_in=256,
- feat_out=256,
- num_classes=15,
- anchor_strides=[8, 16, 32, 64, 128],
- anchor_scales=[4],
- anchor_ratios=[1.0],
- target_means=0.0,
- target_stds=1.0,
- align_conv_type='AlignConv',
- align_conv_size=3,
- use_sigmoid_cls=True,
- anchor_assign=_get_class_default_kwargs(RBoxAssigner),
- reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.1],
- cls_loss_weight=[1.1, 1.05],
- reg_loss_type='l1',
- nms_pre=2000,
- nms='MultiClassNMS'):
- super(S2ANetHead, self).__init__()
- self.stacked_convs = stacked_convs
- self.feat_in = feat_in
- self.feat_out = feat_out
- self.anchor_list = None
- self.anchor_scales = anchor_scales
- self.anchor_ratios = anchor_ratios
- self.anchor_strides = anchor_strides
- self.anchor_strides = paddle.to_tensor(anchor_strides)
- self.anchor_base_sizes = list(anchor_strides)
- self.means = paddle.ones(shape=[5]) * target_means
- self.stds = paddle.ones(shape=[5]) * target_stds
- assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
- self.align_conv_type = align_conv_type
- self.align_conv_size = align_conv_size
- self.use_sigmoid_cls = use_sigmoid_cls
- self.cls_out_channels = num_classes if self.use_sigmoid_cls else num_classes + 1
- self.sampling = False
- self.anchor_assign = anchor_assign
- self.reg_loss_weight = reg_loss_weight
- self.cls_loss_weight = cls_loss_weight
- self.alpha = 1.0
- self.beta = 1.0
- self.reg_loss_type = reg_loss_type
- self.nms_pre = nms_pre
- self.nms = nms
- self.fake_bbox = paddle.to_tensor(
- np.array(
- [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
- dtype='float32'))
- self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
- # anchor
- self.anchor_generators = []
- for anchor_base in self.anchor_base_sizes:
- self.anchor_generators.append(
- S2ANetAnchorGenerator(anchor_base, anchor_scales,
- anchor_ratios))
- self.anchor_generators = nn.LayerList(self.anchor_generators)
- self.fam_cls_convs = nn.Sequential()
- self.fam_reg_convs = nn.Sequential()
- for i in range(self.stacked_convs):
- chan_in = self.feat_in if i == 0 else self.feat_out
- self.fam_cls_convs.add_sublayer(
- 'fam_cls_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=chan_in,
- out_channels=self.feat_out,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
- nn.ReLU())
- self.fam_reg_convs.add_sublayer(
- 'fam_reg_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=chan_in,
- out_channels=self.feat_out,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
- nn.ReLU())
- self.fam_reg = nn.Conv2D(
- self.feat_out,
- 5,
- 1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- prior_prob = 0.01
- bias_init = float(-np.log((1 - prior_prob) / prior_prob))
- self.fam_cls = nn.Conv2D(
- self.feat_out,
- self.cls_out_channels,
- 1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(bias_init)))
- if self.align_conv_type == "AlignConv":
- self.align_conv = AlignConv(self.feat_out, self.feat_out,
- self.align_conv_size)
- elif self.align_conv_type == "Conv":
- self.align_conv = nn.Conv2D(
- self.feat_out,
- self.feat_out,
- self.align_conv_size,
- padding=(self.align_conv_size - 1) // 2,
- bias_attr=ParamAttr(initializer=Constant(0)))
- elif self.align_conv_type == "DCN":
- self.align_conv_offset = nn.Conv2D(
- self.feat_out,
- 2 * self.align_conv_size**2,
- 1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- self.align_conv = paddle.vision.ops.DeformConv2D(
- self.feat_out,
- self.feat_out,
- self.align_conv_size,
- padding=(self.align_conv_size - 1) // 2,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=False)
- self.or_conv = nn.Conv2D(
- self.feat_out,
- self.feat_out,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- # ODM
- self.odm_cls_convs = nn.Sequential()
- self.odm_reg_convs = nn.Sequential()
- for i in range(self.stacked_convs):
- ch_in = self.feat_out
- # ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out
- self.odm_cls_convs.add_sublayer(
- 'odm_cls_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=ch_in,
- out_channels=self.feat_out,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
- nn.ReLU())
- self.odm_reg_convs.add_sublayer(
- 'odm_reg_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=self.feat_out,
- out_channels=self.feat_out,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
- nn.ReLU())
- self.odm_cls = nn.Conv2D(
- self.feat_out,
- self.cls_out_channels,
- 3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(bias_init)))
- self.odm_reg = nn.Conv2D(
- self.feat_out,
- 5,
- 3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- def forward(self, feats, targets=None):
- fam_reg_list, fam_cls_list = [], []
- odm_reg_list, odm_cls_list = [], []
- num_anchors_list, base_anchors_list, refine_anchors_list = [], [], []
- for i, feat in enumerate(feats):
- # get shape
- B = feat.shape[0]
- H, W = paddle.shape(feat)[2], paddle.shape(feat)[3]
- NA = H * W
- num_anchors_list.append(NA)
- fam_cls_feat = self.fam_cls_convs(feat)
- fam_cls = self.fam_cls(fam_cls_feat)
- # [N, CLS, H, W] --> [N, H, W, CLS]
- fam_cls = fam_cls.transpose([0, 2, 3, 1]).reshape(
- [B, NA, self.cls_out_channels])
- fam_cls_list.append(fam_cls)
- fam_reg_feat = self.fam_reg_convs(feat)
- fam_reg = self.fam_reg(fam_reg_feat)
- # [N, 5, H, W] --> [N, H, W, 5]
- fam_reg = fam_reg.transpose([0, 2, 3, 1]).reshape([B, NA, 5])
- fam_reg_list.append(fam_reg)
- # prepare anchor
- init_anchors = self.anchor_generators[i]((H, W),
- self.anchor_strides[i])
- init_anchors = init_anchors.reshape([1, NA, 5])
- base_anchors_list.append(init_anchors.squeeze(0))
- if self.training:
- refine_anchor = self.bbox_decode(fam_reg.detach(), init_anchors)
- else:
- refine_anchor = self.bbox_decode(fam_reg, init_anchors)
- refine_anchors_list.append(refine_anchor)
- if self.align_conv_type == 'AlignConv':
- align_feat = self.align_conv(feat,
- refine_anchor.clone(), (H, W),
- self.anchor_strides[i])
- elif self.align_conv_type == 'DCN':
- align_offset = self.align_conv_offset(feat)
- align_feat = self.align_conv(feat, align_offset)
- elif self.align_conv_type == 'Conv':
- align_feat = self.align_conv(feat)
- or_feat = self.or_conv(align_feat)
- odm_reg_feat = or_feat
- odm_cls_feat = or_feat
- odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
- odm_cls_feat = self.odm_cls_convs(odm_cls_feat)
- odm_cls = self.odm_cls(odm_cls_feat)
- # [N, CLS, H, W] --> [N, H, W, CLS]
- odm_cls = odm_cls.transpose([0, 2, 3, 1]).reshape(
- [B, NA, self.cls_out_channels])
- odm_cls_list.append(odm_cls)
- odm_reg = self.odm_reg(odm_reg_feat)
- # [N, 5, H, W] --> [N, H, W, 5]
- odm_reg = odm_reg.transpose([0, 2, 3, 1]).reshape([B, NA, 5])
- odm_reg_list.append(odm_reg)
- if self.training:
- return self.get_loss([
- fam_cls_list, fam_reg_list, odm_cls_list, odm_reg_list,
- num_anchors_list, base_anchors_list, refine_anchors_list
- ], targets)
- else:
- odm_bboxes_list = []
- for odm_reg, refine_anchor in zip(odm_reg_list,
- refine_anchors_list):
- odm_bboxes = self.bbox_decode(odm_reg, refine_anchor)
- odm_bboxes_list.append(odm_bboxes)
- return [odm_bboxes_list, odm_cls_list]
- def get_bboxes(self, head_outs):
- perd_bboxes_list, pred_scores_list = head_outs
- batch = paddle.shape(pred_scores_list[0])[0]
- bboxes, bbox_num = [], []
- for i in range(batch):
- pred_scores_per_image = [t[i] for t in pred_scores_list]
- pred_bboxes_per_image = [t[i] for t in perd_bboxes_list]
- bbox_per_image, bbox_num_per_image = self.get_bboxes_single(
- pred_scores_per_image, pred_bboxes_per_image)
- bboxes.append(bbox_per_image)
- bbox_num.append(bbox_num_per_image)
- bboxes = paddle.concat(bboxes)
- bbox_num = paddle.concat(bbox_num)
- return bboxes, bbox_num
- def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
- """
- Rescale, clip and filter the bbox from the output of NMS to
- get final prediction.
- Args:
- bboxes(Tensor): bboxes [N, 10]
- bbox_num(Tensor): bbox_num
- im_shape(Tensor): [1 2]
- scale_factor(Tensor): [1 2]
- Returns:
- bbox_pred(Tensor): The output is the prediction with shape [N, 8]
- including labels, scores and bboxes. The size of
- bboxes are corresponding to the original image.
- """
- origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
- origin_shape_list = []
- scale_factor_list = []
- # scale_factor: scale_y, scale_x
- for i in range(bbox_num.shape[0]):
- expand_shape = paddle.expand(origin_shape[i:i + 1, :],
- [bbox_num[i], 2])
- scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
- scale = paddle.concat([
- scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
- scale_y
- ])
- expand_scale = paddle.expand(scale, [bbox_num[i], 8])
- origin_shape_list.append(expand_shape)
- scale_factor_list.append(expand_scale)
- origin_shape_list = paddle.concat(origin_shape_list)
- scale_factor_list = paddle.concat(scale_factor_list)
- # bboxes: [N, 10], label, score, bbox
- pred_label_score = bboxes[:, 0:2]
- pred_bbox = bboxes[:, 2:]
- # rescale bbox to original image
- pred_bbox = pred_bbox.reshape([-1, 8])
- scaled_bbox = pred_bbox / scale_factor_list
- origin_h = origin_shape_list[:, 0]
- origin_w = origin_shape_list[:, 1]
- bboxes = scaled_bbox
- zeros = paddle.zeros_like(origin_h)
- x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
- y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
- x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
- y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
- x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
- y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
- x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
- y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
- pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
- pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
- return pred_result
- def get_bboxes_single(self, cls_score_list, bbox_pred_list):
- mlvl_bboxes = []
- mlvl_scores = []
- for cls_score, bbox_pred in zip(cls_score_list, bbox_pred_list):
- if self.use_sigmoid_cls:
- scores = F.sigmoid(cls_score)
- else:
- scores = F.softmax(cls_score, axis=-1)
- if scores.shape[0] > self.nms_pre:
- # Get maximum scores for foreground classes.
- if self.use_sigmoid_cls:
- max_scores = paddle.max(scores, axis=1)
- else:
- max_scores = paddle.max(scores[:, :-1], axis=1)
- topk_val, topk_inds = paddle.topk(max_scores, self.nms_pre)
- bbox_pred = paddle.gather(bbox_pred, topk_inds)
- scores = paddle.gather(scores, topk_inds)
- mlvl_bboxes.append(bbox_pred)
- mlvl_scores.append(scores)
- mlvl_bboxes = paddle.concat(mlvl_bboxes)
- mlvl_scores = paddle.concat(mlvl_scores)
- mlvl_polys = self.rbox2poly(mlvl_bboxes).unsqueeze(0)
- mlvl_scores = paddle.transpose(mlvl_scores, [1, 0]).unsqueeze(0)
- bbox, bbox_num, _ = self.nms(mlvl_polys, mlvl_scores)
- if bbox.shape[0] <= 0:
- bbox = self.fake_bbox
- bbox_num = self.fake_bbox_num
- return bbox, bbox_num
- def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
- """
- Args:
- pred: pred score
- label: label
- delta: delta
- Returns: loss
- """
- assert pred.shape == label.shape and label.numel() > 0
- assert delta > 0
- diff = paddle.abs(pred - label)
- loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
- diff - 0.5 * delta)
- return loss
- def get_fam_loss(self, fam_target, s2anet_head_out, reg_loss_type='l1'):
- (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
- pos_inds, neg_inds) = fam_target
- fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list, num_anchors_list = s2anet_head_out
- fam_cls_losses = []
- fam_bbox_losses = []
- st_idx = 0
- num_total_samples = len(pos_inds) + len(
- neg_inds) if self.sampling else len(pos_inds)
- num_total_samples = max(1, num_total_samples)
- for idx, feat_anchor_num in enumerate(num_anchors_list):
- # step1: get data
- feat_labels = labels[st_idx:st_idx + feat_anchor_num]
- feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]
- feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
- feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
- # step2: calc cls loss
- feat_labels = feat_labels.reshape(-1)
- feat_label_weights = feat_label_weights.reshape(-1)
- fam_cls_score = fam_cls_branch_list[idx]
- fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
- fam_cls_score1 = fam_cls_score
- feat_labels = paddle.to_tensor(feat_labels)
- feat_labels_one_hot = paddle.nn.functional.one_hot(
- feat_labels, self.cls_out_channels + 1)
- feat_labels_one_hot = feat_labels_one_hot[:, 1:]
- feat_labels_one_hot.stop_gradient = True
- num_total_samples = paddle.to_tensor(
- num_total_samples, dtype='float32', stop_gradient=True)
- fam_cls = F.sigmoid_focal_loss(
- fam_cls_score1,
- feat_labels_one_hot,
- normalizer=num_total_samples,
- reduction='none')
- feat_label_weights = feat_label_weights.reshape(
- feat_label_weights.shape[0], 1)
- feat_label_weights = np.repeat(
- feat_label_weights, self.cls_out_channels, axis=1)
- feat_label_weights = paddle.to_tensor(
- feat_label_weights, stop_gradient=True)
- fam_cls = fam_cls * feat_label_weights
- fam_cls_total = paddle.sum(fam_cls)
- fam_cls_losses.append(fam_cls_total)
- # step3: regression loss
- feat_bbox_targets = paddle.to_tensor(
- feat_bbox_targets, dtype='float32', stop_gradient=True)
- feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
- fam_bbox_pred = fam_reg_branch_list[idx]
- fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
- fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
- fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
- loss_weight = paddle.to_tensor(
- self.reg_loss_weight, dtype='float32', stop_gradient=True)
- fam_bbox = paddle.multiply(fam_bbox, loss_weight)
- feat_bbox_weights = paddle.to_tensor(
- feat_bbox_weights, stop_gradient=True)
- fam_bbox = fam_bbox * feat_bbox_weights
- fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
- fam_bbox_losses.append(fam_bbox_total)
- st_idx += feat_anchor_num
- fam_cls_loss = paddle.add_n(fam_cls_losses)
- fam_cls_loss_weight = paddle.to_tensor(
- self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
- fam_cls_loss = fam_cls_loss * fam_cls_loss_weight
- fam_reg_loss = paddle.add_n(fam_bbox_losses)
- return fam_cls_loss, fam_reg_loss
- def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='l1'):
- (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
- pos_inds, neg_inds) = odm_target
- fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list, num_anchors_list = s2anet_head_out
- odm_cls_losses = []
- odm_bbox_losses = []
- st_idx = 0
- num_total_samples = len(pos_inds) + len(
- neg_inds) if self.sampling else len(pos_inds)
- num_total_samples = max(1, num_total_samples)
- for idx, feat_anchor_num in enumerate(num_anchors_list):
- # step1: get data
- feat_labels = labels[st_idx:st_idx + feat_anchor_num]
- feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]
- feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
- feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
- # step2: calc cls loss
- feat_labels = feat_labels.reshape(-1)
- feat_label_weights = feat_label_weights.reshape(-1)
- odm_cls_score = odm_cls_branch_list[idx]
- odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
- odm_cls_score1 = odm_cls_score
- feat_labels = paddle.to_tensor(feat_labels)
- feat_labels_one_hot = paddle.nn.functional.one_hot(
- feat_labels, self.cls_out_channels + 1)
- feat_labels_one_hot = feat_labels_one_hot[:, 1:]
- feat_labels_one_hot.stop_gradient = True
- num_total_samples = paddle.to_tensor(
- num_total_samples, dtype='float32', stop_gradient=True)
- odm_cls = F.sigmoid_focal_loss(
- odm_cls_score1,
- feat_labels_one_hot,
- normalizer=num_total_samples,
- reduction='none')
- feat_label_weights = feat_label_weights.reshape(
- feat_label_weights.shape[0], 1)
- feat_label_weights = np.repeat(
- feat_label_weights, self.cls_out_channels, axis=1)
- feat_label_weights = paddle.to_tensor(feat_label_weights)
- feat_label_weights.stop_gradient = True
- odm_cls = odm_cls * feat_label_weights
- odm_cls_total = paddle.sum(odm_cls)
- odm_cls_losses.append(odm_cls_total)
- # # step3: regression loss
- feat_bbox_targets = paddle.to_tensor(
- feat_bbox_targets, dtype='float32')
- feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
- feat_bbox_targets.stop_gradient = True
- odm_bbox_pred = odm_reg_branch_list[idx]
- odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
- odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
- odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
- loss_weight = paddle.to_tensor(
- self.reg_loss_weight, dtype='float32', stop_gradient=True)
- odm_bbox = paddle.multiply(odm_bbox, loss_weight)
- feat_bbox_weights = paddle.to_tensor(
- feat_bbox_weights, stop_gradient=True)
- odm_bbox = odm_bbox * feat_bbox_weights
- odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
- odm_bbox_losses.append(odm_bbox_total)
- st_idx += feat_anchor_num
- odm_cls_loss = paddle.add_n(odm_cls_losses)
- odm_cls_loss_weight = paddle.to_tensor(
- self.cls_loss_weight[1], dtype='float32', stop_gradient=True)
- odm_cls_loss = odm_cls_loss * odm_cls_loss_weight
- odm_reg_loss = paddle.add_n(odm_bbox_losses)
- return odm_cls_loss, odm_reg_loss
- def get_loss(self, head_outs, inputs):
- fam_cls_list, fam_reg_list, odm_cls_list, odm_reg_list, \
- num_anchors_list, base_anchors_list, refine_anchors_list = head_outs
- # compute loss
- fam_cls_loss_lst = []
- fam_reg_loss_lst = []
- odm_cls_loss_lst = []
- odm_reg_loss_lst = []
- batch = len(inputs['gt_rbox'])
- for i in range(batch):
- # data_format: (xc, yc, w, h, theta)
- gt_mask = inputs['pad_gt_mask'][i, :, 0]
- gt_idx = paddle.nonzero(gt_mask).squeeze(-1)
- gt_bboxes = paddle.gather(inputs['gt_rbox'][i], gt_idx).numpy()
- gt_labels = paddle.gather(inputs['gt_class'][i], gt_idx).numpy()
- is_crowd = paddle.gather(inputs['is_crowd'][i], gt_idx).numpy()
- gt_labels = gt_labels + 1
- anchors_per_image = np.concatenate(base_anchors_list)
- fam_cls_per_image = [t[i] for t in fam_cls_list]
- fam_reg_per_image = [t[i] for t in fam_reg_list]
- odm_cls_per_image = [t[i] for t in odm_cls_list]
- odm_reg_per_image = [t[i] for t in odm_reg_list]
- im_s2anet_head_out = (fam_cls_per_image, fam_reg_per_image,
- odm_cls_per_image, odm_reg_per_image,
- num_anchors_list)
- # FAM
- im_fam_target = self.anchor_assign(anchors_per_image, gt_bboxes,
- gt_labels, is_crowd)
- if im_fam_target is not None:
- im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
- im_fam_target, im_s2anet_head_out, self.reg_loss_type)
- fam_cls_loss_lst.append(im_fam_cls_loss)
- fam_reg_loss_lst.append(im_fam_reg_loss)
- # ODM
- refine_anchors_per_image = [t[i] for t in refine_anchors_list]
- refine_anchors_per_image = paddle.concat(
- refine_anchors_per_image).numpy()
- im_odm_target = self.anchor_assign(refine_anchors_per_image,
- gt_bboxes, gt_labels, is_crowd)
- if im_odm_target is not None:
- im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
- im_odm_target, im_s2anet_head_out, self.reg_loss_type)
- odm_cls_loss_lst.append(im_odm_cls_loss)
- odm_reg_loss_lst.append(im_odm_reg_loss)
- fam_cls_loss = paddle.add_n(fam_cls_loss_lst) / batch
- fam_reg_loss = paddle.add_n(fam_reg_loss_lst) / batch
- odm_cls_loss = paddle.add_n(odm_cls_loss_lst) / batch
- odm_reg_loss = paddle.add_n(odm_reg_loss_lst) / batch
- loss = fam_cls_loss + fam_reg_loss + odm_cls_loss + odm_reg_loss
- return {
- 'loss': loss,
- 'fam_cls_loss': fam_cls_loss,
- 'fam_reg_loss': fam_reg_loss,
- 'odm_cls_loss': odm_cls_loss,
- 'odm_reg_loss': odm_reg_loss
- }
- def bbox_decode(self, preds, anchors, wh_ratio_clip=1e-6):
- """decode bbox from deltas
- Args:
- preds: [B, L, 5]
- anchors: [1, L, 5]
- return:
- bboxes: [B, L, 5]
- """
- preds = paddle.add(paddle.multiply(preds, self.stds), self.means)
- dx, dy, dw, dh, dangle = paddle.split(preds, 5, axis=-1)
- max_ratio = np.abs(np.log(wh_ratio_clip))
- dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
- dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)
- rroi_x, rroi_y, rroi_w, rroi_h, rroi_angle = paddle.split(
- anchors, 5, axis=-1)
- gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
- rroi_angle) + rroi_x
- gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
- rroi_angle) + rroi_y
- gw = rroi_w * dw.exp()
- gh = rroi_h * dh.exp()
- ga = np.pi * dangle + rroi_angle
- ga = (ga + np.pi / 4) % np.pi - np.pi / 4
- bboxes = paddle.concat([gx, gy, gw, gh, ga], axis=-1)
- return bboxes
- def rbox2poly(self, rboxes):
- """
- rboxes: [x_ctr,y_ctr,w,h,angle]
- to
- polys: [x0,y0,x1,y1,x2,y2,x3,y3]
- """
- N = paddle.shape(rboxes)[0]
- x_ctr = rboxes[:, 0]
- y_ctr = rboxes[:, 1]
- width = rboxes[:, 2]
- height = rboxes[:, 3]
- angle = rboxes[:, 4]
- tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5
- normal_rects = paddle.stack(
- [tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0)
- normal_rects = paddle.reshape(normal_rects, [2, 4, N])
- normal_rects = paddle.transpose(normal_rects, [2, 0, 1])
- sin, cos = paddle.sin(angle), paddle.cos(angle)
- # M: [N,2,2]
- M = paddle.stack([cos, -sin, sin, cos], axis=0)
- M = paddle.reshape(M, [2, 2, N])
- M = paddle.transpose(M, [2, 0, 1])
- # polys: [N,8]
- polys = paddle.matmul(M, normal_rects)
- polys = paddle.transpose(polys, [2, 1, 0])
- polys = paddle.reshape(polys, [-1, N])
- polys = paddle.transpose(polys, [1, 0])
- tmp = paddle.stack(
- [x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1)
- polys = polys + tmp
- return polys
|