123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from paddle import ParamAttr
- from paddle.nn.initializer import KaimingNormal
- from paddle.nn.initializer import Normal, Constant
- from ..bbox_utils import batch_distance2bbox
- from ..losses import GIoULoss
- from ..initializer import bias_init_with_prob, constant_, normal_
- from ..assigners.utils import generate_anchors_for_grid_cell
- from ppdet.modeling.backbones.cspresnet import ConvBNLayer, RepVggBlock
- from ppdet.modeling.ops import get_static_shape, get_act_fn
- from ppdet.modeling.layers import MultiClassNMS
- __all__ = ['PPYOLOEHead', 'SimpleConvHead']
- class ESEAttn(nn.Layer):
- def __init__(self, feat_channels, act='swish', attn_conv='convbn'):
- super(ESEAttn, self).__init__()
- self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
- if attn_conv == 'convbn':
- self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act)
- else:
- self.conv = RepVggBlock(feat_channels, feat_channels, act=act)
- self._init_weights()
- def _init_weights(self):
- normal_(self.fc.weight, std=0.001)
- def forward(self, feat, avg_feat):
- weight = F.sigmoid(self.fc(avg_feat))
- return self.conv(feat * weight)
- @register
- class PPYOLOEHead(nn.Layer):
- __shared__ = [
- 'num_classes', 'eval_size', 'trt', 'exclude_nms',
- 'exclude_post_process', 'use_shared_conv'
- ]
- __inject__ = ['static_assigner', 'assigner', 'nms']
- def __init__(self,
- in_channels=[1024, 512, 256],
- num_classes=80,
- act='swish',
- fpn_strides=(32, 16, 8),
- grid_cell_scale=5.0,
- grid_cell_offset=0.5,
- reg_max=16,
- reg_range=None,
- static_assigner_epoch=4,
- use_varifocal_loss=True,
- static_assigner='ATSSAssigner',
- assigner='TaskAlignedAssigner',
- nms='MultiClassNMS',
- eval_size=None,
- loss_weight={
- 'class': 1.0,
- 'iou': 2.5,
- 'dfl': 0.5,
- },
- trt=False,
- attn_conv='convbn',
- exclude_nms=False,
- exclude_post_process=False,
- use_shared_conv=True):
- super(PPYOLOEHead, self).__init__()
- assert len(in_channels) > 0, "len(in_channels) should > 0"
- self.in_channels = in_channels
- self.num_classes = num_classes
- self.fpn_strides = fpn_strides
- self.grid_cell_scale = grid_cell_scale
- self.grid_cell_offset = grid_cell_offset
- if reg_range:
- self.sm_use = True
- self.reg_range = reg_range
- else:
- self.sm_use = False
- self.reg_range = (0, reg_max + 1)
- self.reg_channels = self.reg_range[1] - self.reg_range[0]
- self.iou_loss = GIoULoss()
- self.loss_weight = loss_weight
- self.use_varifocal_loss = use_varifocal_loss
- self.eval_size = eval_size
- self.static_assigner_epoch = static_assigner_epoch
- self.static_assigner = static_assigner
- self.assigner = assigner
- self.nms = nms
- if isinstance(self.nms, MultiClassNMS) and trt:
- self.nms.trt = trt
- self.exclude_nms = exclude_nms
- self.exclude_post_process = exclude_post_process
- self.use_shared_conv = use_shared_conv
- # stem
- self.stem_cls = nn.LayerList()
- self.stem_reg = nn.LayerList()
- act = get_act_fn(
- act, trt=trt) if act is None or isinstance(act,
- (str, dict)) else act
- for in_c in self.in_channels:
- self.stem_cls.append(ESEAttn(in_c, act=act, attn_conv=attn_conv))
- self.stem_reg.append(ESEAttn(in_c, act=act, attn_conv=attn_conv))
- # pred head
- self.pred_cls = nn.LayerList()
- self.pred_reg = nn.LayerList()
- for in_c in self.in_channels:
- self.pred_cls.append(
- nn.Conv2D(
- in_c, self.num_classes, 3, padding=1))
- self.pred_reg.append(
- nn.Conv2D(
- in_c, 4 * self.reg_channels, 3, padding=1))
- # projection conv
- self.proj_conv = nn.Conv2D(self.reg_channels, 1, 1, bias_attr=False)
- self.proj_conv.skip_quant = True
- self._init_weights()
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- def _init_weights(self):
- bias_cls = bias_init_with_prob(0.01)
- for cls_, reg_ in zip(self.pred_cls, self.pred_reg):
- constant_(cls_.weight)
- constant_(cls_.bias, bias_cls)
- constant_(reg_.weight)
- constant_(reg_.bias, 1.0)
- proj = paddle.linspace(self.reg_range[0], self.reg_range[1] - 1,
- self.reg_channels).reshape(
- [1, self.reg_channels, 1, 1])
- self.proj_conv.weight.set_value(proj)
- self.proj_conv.weight.stop_gradient = True
- if self.eval_size:
- anchor_points, stride_tensor = self._generate_anchors()
- self.anchor_points = anchor_points
- self.stride_tensor = stride_tensor
- def forward_train(self, feats, targets, aux_pred=None):
- anchors, anchor_points, num_anchors_list, stride_tensor = \
- generate_anchors_for_grid_cell(
- feats, self.fpn_strides, self.grid_cell_scale,
- self.grid_cell_offset)
- cls_score_list, reg_distri_list = [], []
- for i, feat in enumerate(feats):
- avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
- cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
- feat)
- reg_distri = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
- # cls and reg
- cls_score = F.sigmoid(cls_logit)
- cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
- reg_distri_list.append(reg_distri.flatten(2).transpose([0, 2, 1]))
- cls_score_list = paddle.concat(cls_score_list, axis=1)
- reg_distri_list = paddle.concat(reg_distri_list, axis=1)
- return self.get_loss([
- cls_score_list, reg_distri_list, anchors, anchor_points,
- num_anchors_list, stride_tensor
- ], targets, aux_pred)
- def _generate_anchors(self, feats=None, dtype='float32'):
- # just use in eval time
- anchor_points = []
- stride_tensor = []
- for i, stride in enumerate(self.fpn_strides):
- if feats is not None:
- _, _, h, w = feats[i].shape
- else:
- h = int(self.eval_size[0] / stride)
- w = int(self.eval_size[1] / stride)
- shift_x = paddle.arange(end=w) + self.grid_cell_offset
- shift_y = paddle.arange(end=h) + self.grid_cell_offset
- shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
- anchor_point = paddle.cast(
- paddle.stack(
- [shift_x, shift_y], axis=-1), dtype=dtype)
- anchor_points.append(anchor_point.reshape([-1, 2]))
- stride_tensor.append(paddle.full([h * w, 1], stride, dtype=dtype))
- anchor_points = paddle.concat(anchor_points)
- stride_tensor = paddle.concat(stride_tensor)
- return anchor_points, stride_tensor
- def forward_eval(self, feats):
- if self.eval_size:
- anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
- else:
- anchor_points, stride_tensor = self._generate_anchors(feats)
- cls_score_list, reg_dist_list = [], []
- for i, feat in enumerate(feats):
- _, _, h, w = feat.shape
- l = h * w
- avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
- cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
- feat)
- reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
- reg_dist = reg_dist.reshape(
- [-1, 4, self.reg_channels, l]).transpose([0, 2, 3, 1])
- if self.use_shared_conv:
- reg_dist = self.proj_conv(F.softmax(
- reg_dist, axis=1)).squeeze(1)
- else:
- reg_dist = F.softmax(reg_dist, axis=1)
- # cls and reg
- cls_score = F.sigmoid(cls_logit)
- cls_score_list.append(cls_score.reshape([-1, self.num_classes, l]))
- reg_dist_list.append(reg_dist)
- cls_score_list = paddle.concat(cls_score_list, axis=-1)
- if self.use_shared_conv:
- reg_dist_list = paddle.concat(reg_dist_list, axis=1)
- else:
- reg_dist_list = paddle.concat(reg_dist_list, axis=2)
- reg_dist_list = self.proj_conv(reg_dist_list).squeeze(1)
- return cls_score_list, reg_dist_list, anchor_points, stride_tensor
- def forward(self, feats, targets=None, aux_pred=None):
- assert len(feats) == len(self.fpn_strides), \
- "The size of feats is not equal to size of fpn_strides"
- if self.training:
- return self.forward_train(feats, targets, aux_pred)
- else:
- return self.forward_eval(feats)
- @staticmethod
- def _focal_loss(score, label, alpha=0.25, gamma=2.0):
- weight = (score - label).pow(gamma)
- if alpha > 0:
- alpha_t = alpha * label + (1 - alpha) * (1 - label)
- weight *= alpha_t
- loss = F.binary_cross_entropy(
- score, label, weight=weight, reduction='sum')
- return loss
- @staticmethod
- def _varifocal_loss(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
- weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
- loss = F.binary_cross_entropy(
- pred_score, gt_score, weight=weight, reduction='sum')
- return loss
- def _bbox_decode(self, anchor_points, pred_dist):
- _, l, _ = get_static_shape(pred_dist)
- pred_dist = F.softmax(pred_dist.reshape([-1, l, 4, self.reg_channels]))
- pred_dist = self.proj_conv(pred_dist.transpose([0, 3, 1, 2])).squeeze(1)
- return batch_distance2bbox(anchor_points, pred_dist)
- def _bbox2distance(self, points, bbox):
- x1y1, x2y2 = paddle.split(bbox, 2, -1)
- lt = points - x1y1
- rb = x2y2 - points
- return paddle.concat([lt, rb], -1).clip(self.reg_range[0],
- self.reg_range[1] - 1 - 0.01)
- def _df_loss(self, pred_dist, target, lower_bound=0):
- target_left = paddle.cast(target.floor(), 'int64')
- target_right = target_left + 1
- weight_left = target_right.astype('float32') - target
- weight_right = 1 - weight_left
- loss_left = F.cross_entropy(
- pred_dist, target_left - lower_bound,
- reduction='none') * weight_left
- loss_right = F.cross_entropy(
- pred_dist, target_right - lower_bound,
- reduction='none') * weight_right
- return (loss_left + loss_right).mean(-1, keepdim=True)
- def _bbox_loss(self, pred_dist, pred_bboxes, anchor_points, assigned_labels,
- assigned_bboxes, assigned_scores, assigned_scores_sum):
- # select positive samples mask
- mask_positive = (assigned_labels != self.num_classes)
- num_pos = mask_positive.sum()
- # pos/neg loss
- if num_pos > 0:
- # l1 + iou
- bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
- pred_bboxes_pos = paddle.masked_select(pred_bboxes,
- bbox_mask).reshape([-1, 4])
- assigned_bboxes_pos = paddle.masked_select(
- assigned_bboxes, bbox_mask).reshape([-1, 4])
- bbox_weight = paddle.masked_select(
- assigned_scores.sum(-1), mask_positive).unsqueeze(-1)
- loss_l1 = F.l1_loss(pred_bboxes_pos, assigned_bboxes_pos)
- loss_iou = self.iou_loss(pred_bboxes_pos,
- assigned_bboxes_pos) * bbox_weight
- loss_iou = loss_iou.sum() / assigned_scores_sum
- dist_mask = mask_positive.unsqueeze(-1).tile(
- [1, 1, self.reg_channels * 4])
- pred_dist_pos = paddle.masked_select(
- pred_dist, dist_mask).reshape([-1, 4, self.reg_channels])
- assigned_ltrb = self._bbox2distance(anchor_points, assigned_bboxes)
- assigned_ltrb_pos = paddle.masked_select(
- assigned_ltrb, bbox_mask).reshape([-1, 4])
- loss_dfl = self._df_loss(pred_dist_pos, assigned_ltrb_pos,
- self.reg_range[0]) * bbox_weight
- loss_dfl = loss_dfl.sum() / assigned_scores_sum
- else:
- loss_l1 = paddle.zeros([1])
- loss_iou = paddle.zeros([1])
- loss_dfl = pred_dist.sum() * 0.
- return loss_l1, loss_iou, loss_dfl
- def get_loss(self, head_outs, gt_meta, aux_pred=None):
- pred_scores, pred_distri, anchors,\
- anchor_points, num_anchors_list, stride_tensor = head_outs
- anchor_points_s = anchor_points / stride_tensor
- pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri)
- if aux_pred is not None:
- pred_scores_aux = aux_pred[0]
- pred_bboxes_aux = self._bbox_decode(anchor_points_s, aux_pred[1])
- gt_labels = gt_meta['gt_class']
- gt_bboxes = gt_meta['gt_bbox']
- pad_gt_mask = gt_meta['pad_gt_mask']
- # label assignment
- if gt_meta['epoch_id'] < self.static_assigner_epoch:
- assigned_labels, assigned_bboxes, assigned_scores = \
- self.static_assigner(
- anchors,
- num_anchors_list,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index=self.num_classes,
- pred_bboxes=pred_bboxes.detach() * stride_tensor)
- alpha_l = 0.25
- else:
- if self.sm_use:
- # only used in smalldet of PPYOLOE-SOD model
- assigned_labels, assigned_bboxes, assigned_scores = \
- self.assigner(
- pred_scores.detach(),
- pred_bboxes.detach() * stride_tensor,
- anchor_points,
- stride_tensor,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index=self.num_classes)
- else:
- if aux_pred is None:
- assigned_labels, assigned_bboxes, assigned_scores = \
- self.assigner(
- pred_scores.detach(),
- pred_bboxes.detach() * stride_tensor,
- anchor_points,
- num_anchors_list,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index=self.num_classes)
- else:
- assigned_labels, assigned_bboxes, assigned_scores = \
- self.assigner(
- pred_scores_aux.detach(),
- pred_bboxes_aux.detach() * stride_tensor,
- anchor_points,
- num_anchors_list,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index=self.num_classes)
- alpha_l = -1
- # rescale bbox
- assigned_bboxes /= stride_tensor
- assign_out_dict = self.get_loss_from_assign(
- pred_scores, pred_distri, pred_bboxes, anchor_points_s,
- assigned_labels, assigned_bboxes, assigned_scores, alpha_l)
- if aux_pred is not None:
- assign_out_dict_aux = self.get_loss_from_assign(
- aux_pred[0], aux_pred[1], pred_bboxes_aux, anchor_points_s,
- assigned_labels, assigned_bboxes, assigned_scores, alpha_l)
- loss = {}
- for key in assign_out_dict.keys():
- loss[key] = assign_out_dict[key] + assign_out_dict_aux[key]
- else:
- loss = assign_out_dict
- return loss
- def get_loss_from_assign(self, pred_scores, pred_distri, pred_bboxes,
- anchor_points_s, assigned_labels, assigned_bboxes,
- assigned_scores, alpha_l):
- # cls loss
- if self.use_varifocal_loss:
- one_hot_label = F.one_hot(assigned_labels,
- self.num_classes + 1)[..., :-1]
- loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
- one_hot_label)
- else:
- loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)
- assigned_scores_sum = assigned_scores.sum()
- if paddle.distributed.get_world_size() > 1:
- paddle.distributed.all_reduce(assigned_scores_sum)
- assigned_scores_sum /= paddle.distributed.get_world_size()
- assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
- loss_cls /= assigned_scores_sum
- loss_l1, loss_iou, loss_dfl = \
- self._bbox_loss(pred_distri, pred_bboxes, anchor_points_s,
- assigned_labels, assigned_bboxes, assigned_scores,
- assigned_scores_sum)
- loss = self.loss_weight['class'] * loss_cls + \
- self.loss_weight['iou'] * loss_iou + \
- self.loss_weight['dfl'] * loss_dfl
- out_dict = {
- 'loss': loss,
- 'loss_cls': loss_cls,
- 'loss_iou': loss_iou,
- 'loss_dfl': loss_dfl,
- 'loss_l1': loss_l1,
- }
- return out_dict
- def post_process(self, head_outs, scale_factor):
- pred_scores, pred_dist, anchor_points, stride_tensor = head_outs
- pred_bboxes = batch_distance2bbox(anchor_points, pred_dist)
- pred_bboxes *= stride_tensor
- if self.exclude_post_process:
- return paddle.concat(
- [pred_bboxes, pred_scores.transpose([0, 2, 1])], axis=-1), None
- else:
- # scale bbox to origin
- scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
- scale_factor = paddle.concat(
- [scale_x, scale_y, scale_x, scale_y],
- axis=-1).reshape([-1, 1, 4])
- pred_bboxes /= scale_factor
- if self.exclude_nms:
- # `exclude_nms=True` just use in benchmark
- return pred_bboxes, pred_scores
- else:
- bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
- return bbox_pred, bbox_num
- def get_activation(name="LeakyReLU"):
- if name == "silu":
- module = nn.Silu()
- elif name == "relu":
- module = nn.ReLU()
- elif name in ["LeakyReLU", 'leakyrelu', 'lrelu']:
- module = nn.LeakyReLU(0.1)
- elif name is None:
- module = nn.Identity()
- else:
- raise AttributeError("Unsupported act type: {}".format(name))
- return module
- class ConvNormLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- norm_type='gn',
- activation="LeakyReLU"):
- super(ConvNormLayer, self).__init__()
- assert norm_type in ['bn', 'sync_bn', 'syncbn', 'gn', None]
- self.conv = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- groups=groups,
- bias_attr=False,
- weight_attr=ParamAttr(initializer=KaimingNormal()))
- if norm_type in ['bn', 'sync_bn', 'syncbn']:
- self.norm = nn.BatchNorm2D(out_channels)
- elif norm_type == 'gn':
- self.norm = nn.GroupNorm(num_groups=32, num_channels=out_channels)
- else:
- self.norm = None
- self.act = get_activation(activation)
- def forward(self, x):
- y = self.conv(x)
- if self.norm is not None:
- y = self.norm(y)
- y = self.act(y)
- return y
- class ScaleReg(nn.Layer):
- """
- Parameter for scaling the regression outputs.
- """
- def __init__(self, scale=1.0):
- super(ScaleReg, self).__init__()
- scale = paddle.to_tensor(scale)
- self.scale = self.create_parameter(
- shape=[1],
- dtype='float32',
- default_initializer=nn.initializer.Assign(scale))
- def forward(self, x):
- return x * self.scale
- @register
- class SimpleConvHead(nn.Layer):
- __shared__ = ['num_classes']
- def __init__(self,
- num_classes=80,
- feat_in=288,
- feat_out=288,
- num_convs=1,
- fpn_strides=[32, 16, 8, 4],
- norm_type='gn',
- act='LeakyReLU',
- prior_prob=0.01,
- reg_max=16):
- super(SimpleConvHead, self).__init__()
- self.num_classes = num_classes
- self.feat_in = feat_in
- self.feat_out = feat_out
- self.num_convs = num_convs
- self.fpn_strides = fpn_strides
- self.reg_max = reg_max
- self.cls_convs = nn.LayerList()
- self.reg_convs = nn.LayerList()
- for i in range(self.num_convs):
- in_c = feat_in if i == 0 else feat_out
- self.cls_convs.append(
- ConvNormLayer(
- in_c,
- feat_out,
- 3,
- stride=1,
- padding=1,
- norm_type=norm_type,
- activation=act))
- self.reg_convs.append(
- ConvNormLayer(
- in_c,
- feat_out,
- 3,
- stride=1,
- padding=1,
- norm_type=norm_type,
- activation=act))
- bias_cls = bias_init_with_prob(prior_prob)
- self.gfl_cls = nn.Conv2D(
- feat_out,
- self.num_classes,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=bias_cls)))
- self.gfl_reg = nn.Conv2D(
- feat_out,
- 4 * (self.reg_max + 1),
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0.0, std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0)))
- self.scales = nn.LayerList()
- for i in range(len(self.fpn_strides)):
- self.scales.append(ScaleReg(1.0))
- def forward(self, feats):
- cls_scores = []
- bbox_preds = []
- for x, scale in zip(feats, self.scales):
- cls_feat = x
- reg_feat = x
- for cls_conv in self.cls_convs:
- cls_feat = cls_conv(cls_feat)
- for reg_conv in self.reg_convs:
- reg_feat = reg_conv(reg_feat)
- cls_score = self.gfl_cls(cls_feat)
- cls_score = F.sigmoid(cls_score)
- cls_score = cls_score.flatten(2).transpose([0, 2, 1])
- cls_scores.append(cls_score)
- bbox_pred = scale(self.gfl_reg(reg_feat))
- bbox_pred = bbox_pred.flatten(2).transpose([0, 2, 1])
- bbox_preds.append(bbox_pred)
- cls_scores = paddle.concat(cls_scores, axis=1)
- bbox_preds = paddle.concat(bbox_preds, axis=1)
- return cls_scores, bbox_preds
|