123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is based on:
- # https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/ld_head.py
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import Normal, Constant
- from ppdet.core.workspace import register, serializable
- from ppdet.modeling.layers import ConvNormLayer
- from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance, batch_distance2bbox
- from ppdet.data.transform.atss_assigner import bbox_overlaps
- from .gfl_head import GFLHead
- @register
- class LDGFLHead(GFLHead):
- """
- GFLHead for LD distill
- Args:
- conv_feat (object): Instance of 'FCOSFeat'
- num_classes (int): Number of classes
- fpn_stride (list): The stride of each FPN Layer
- prior_prob (float): Used to set the bias init for the class prediction layer
- loss_class (object): Instance of QualityFocalLoss.
- loss_dfl (object): Instance of DistributionFocalLoss.
- loss_bbox (object): Instance of bbox loss.
- reg_max: Max value of integral set :math: `{0, ..., reg_max}`
- n QFL setting. Default: 16.
- """
- __inject__ = [
- 'conv_feat', 'dgqp_module', 'loss_class', 'loss_dfl', 'loss_bbox',
- 'loss_ld', 'loss_ld_vlr', 'loss_kd', 'nms'
- ]
- __shared__ = ['num_classes']
- def __init__(self,
- conv_feat='FCOSFeat',
- dgqp_module=None,
- num_classes=80,
- fpn_stride=[8, 16, 32, 64, 128],
- prior_prob=0.01,
- loss_class='QualityFocalLoss',
- loss_dfl='DistributionFocalLoss',
- loss_bbox='GIoULoss',
- loss_ld='KnowledgeDistillationKLDivLoss',
- loss_ld_vlr='KnowledgeDistillationKLDivLoss',
- loss_kd='KnowledgeDistillationKLDivLoss',
- reg_max=16,
- feat_in_chan=256,
- nms=None,
- nms_pre=1000,
- cell_offset=0):
- super(LDGFLHead, self).__init__(
- conv_feat=conv_feat,
- dgqp_module=dgqp_module,
- num_classes=num_classes,
- fpn_stride=fpn_stride,
- prior_prob=prior_prob,
- loss_class=loss_class,
- loss_dfl=loss_dfl,
- loss_bbox=loss_bbox,
- reg_max=reg_max,
- feat_in_chan=feat_in_chan,
- nms=nms,
- nms_pre=nms_pre,
- cell_offset=cell_offset)
- self.loss_ld = loss_ld
- self.loss_kd = loss_kd
- self.loss_ld_vlr = loss_ld_vlr
- def forward(self, fpn_feats):
- assert len(fpn_feats) == len(
- self.fpn_stride
- ), "The size of fpn_feats is not equal to size of fpn_stride"
- cls_logits_list = []
- bboxes_reg_list = []
- for stride, scale_reg, fpn_feat in zip(self.fpn_stride,
- self.scales_regs, fpn_feats):
- conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat)
- cls_score = self.gfl_head_cls(conv_cls_feat)
- bbox_pred = scale_reg(self.gfl_head_reg(conv_reg_feat))
- if self.dgqp_module:
- quality_score = self.dgqp_module(bbox_pred)
- cls_score = F.sigmoid(cls_score) * quality_score
- if not self.training:
- cls_score = F.sigmoid(cls_score.transpose([0, 2, 3, 1]))
- bbox_pred = bbox_pred.transpose([0, 2, 3, 1])
- b, cell_h, cell_w, _ = paddle.shape(cls_score)
- y, x = self.get_single_level_center_point(
- [cell_h, cell_w], stride, cell_offset=self.cell_offset)
- center_points = paddle.stack([x, y], axis=-1)
- cls_score = cls_score.reshape([b, -1, self.cls_out_channels])
- bbox_pred = self.distribution_project(bbox_pred) * stride
- bbox_pred = bbox_pred.reshape([b, cell_h * cell_w, 4])
- # NOTE: If keep_ratio=False and image shape value that
- # multiples of 32, distance2bbox not set max_shapes parameter
- # to speed up model prediction. If need to set max_shapes,
- # please use inputs['im_shape'].
- bbox_pred = batch_distance2bbox(
- center_points, bbox_pred, max_shapes=None)
- cls_logits_list.append(cls_score)
- bboxes_reg_list.append(bbox_pred)
- return (cls_logits_list, bboxes_reg_list)
- def get_loss(self, gfl_head_outs, gt_meta, soft_label_list,
- soft_targets_list):
- cls_logits, bboxes_reg = gfl_head_outs
- num_level_anchors = [
- featmap.shape[-2] * featmap.shape[-1] for featmap in cls_logits
- ]
- grid_cells_list = self._images_to_levels(gt_meta['grid_cells'],
- num_level_anchors)
- labels_list = self._images_to_levels(gt_meta['labels'],
- num_level_anchors)
- label_weights_list = self._images_to_levels(gt_meta['label_weights'],
- num_level_anchors)
- bbox_targets_list = self._images_to_levels(gt_meta['bbox_targets'],
- num_level_anchors)
- # vlr regions
- vlr_regions_list = self._images_to_levels(gt_meta['vlr_regions'],
- num_level_anchors)
- num_total_pos = sum(gt_meta['pos_num'])
- try:
- paddle.distributed.all_reduce(num_total_pos)
- num_total_pos = paddle.clip(
- num_total_pos / paddle.distributed.get_world_size(), min=1.)
- except:
- num_total_pos = max(num_total_pos, 1)
- loss_bbox_list, loss_dfl_list, loss_qfl_list, loss_ld_list, avg_factor = [], [], [], [], []
- loss_ld_vlr_list, loss_kd_list = [], []
- for cls_score, bbox_pred, grid_cells, labels, label_weights, bbox_targets, stride, soft_targets,\
- soft_label, vlr_region in zip(
- cls_logits, bboxes_reg, grid_cells_list, labels_list,
- label_weights_list, bbox_targets_list, self.fpn_stride, soft_targets_list,
- soft_label_list, vlr_regions_list):
- grid_cells = grid_cells.reshape([-1, 4])
- cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
- [-1, self.cls_out_channels])
- bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
- [-1, 4 * (self.reg_max + 1)])
- soft_targets = soft_targets.transpose([0, 2, 3, 1]).reshape(
- [-1, 4 * (self.reg_max + 1)])
- soft_label = soft_label.transpose([0, 2, 3, 1]).reshape(
- [-1, self.cls_out_channels])
- # feture im
- # teacher_x = teacher_x.transpose([0, 2, 3, 1]).reshape([-1, 256])
- # x = x.transpose([0, 2, 3, 1]).reshape([-1, 256])
- bbox_targets = bbox_targets.reshape([-1, 4])
- labels = labels.reshape([-1])
- label_weights = label_weights.reshape([-1])
- vlr_region = vlr_region.reshape([-1])
- bg_class_ind = self.num_classes
- pos_inds = paddle.nonzero(
- paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
- as_tuple=False).squeeze(1)
- score = np.zeros(labels.shape)
- remain_inds = (vlr_region > 0).nonzero()
- if len(pos_inds) > 0:
- pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
- pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
- pos_grid_cells = paddle.gather(grid_cells, pos_inds, axis=0)
- pos_grid_cell_centers = self._grid_cells_to_center(
- pos_grid_cells) / stride
- weight_targets = F.sigmoid(cls_score.detach())
- weight_targets = paddle.gather(
- weight_targets.max(axis=1, keepdim=True), pos_inds, axis=0)
- pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
- pos_decode_bbox_pred = distance2bbox(pos_grid_cell_centers,
- pos_bbox_pred_corners)
- pos_decode_bbox_targets = pos_bbox_targets / stride
- bbox_iou = bbox_overlaps(
- pos_decode_bbox_pred.detach().numpy(),
- pos_decode_bbox_targets.detach().numpy(),
- is_aligned=True)
- score[pos_inds.numpy()] = bbox_iou
- pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
- pos_soft_targets = paddle.gather(soft_targets, pos_inds, axis=0)
- soft_corners = pos_soft_targets.reshape([-1, self.reg_max + 1])
- target_corners = bbox2distance(pos_grid_cell_centers,
- pos_decode_bbox_targets,
- self.reg_max).reshape([-1])
- # regression loss
- loss_bbox = paddle.sum(
- self.loss_bbox(pos_decode_bbox_pred,
- pos_decode_bbox_targets) * weight_targets)
- # dfl loss
- loss_dfl = self.loss_dfl(
- pred_corners,
- target_corners,
- weight=weight_targets.expand([-1, 4]).reshape([-1]),
- avg_factor=4.0)
- # ld loss
- loss_ld = self.loss_ld(
- pred_corners,
- soft_corners,
- weight=weight_targets.expand([-1, 4]).reshape([-1]),
- avg_factor=4.0)
- loss_kd = self.loss_kd(
- paddle.gather(
- cls_score, pos_inds, axis=0),
- paddle.gather(
- soft_label, pos_inds, axis=0),
- weight=paddle.gather(
- label_weights, pos_inds, axis=0),
- avg_factor=pos_inds.shape[0])
- else:
- loss_bbox = bbox_pred.sum() * 0
- loss_dfl = bbox_pred.sum() * 0
- loss_ld = bbox_pred.sum() * 0
- loss_kd = bbox_pred.sum() * 0
- weight_targets = paddle.to_tensor([0], dtype='float32')
- if len(remain_inds) > 0:
- neg_pred_corners = bbox_pred[remain_inds].reshape(
- [-1, self.reg_max + 1])
- neg_soft_corners = soft_targets[remain_inds].reshape(
- [-1, self.reg_max + 1])
- remain_targets = vlr_region[remain_inds]
- loss_ld_vlr = self.loss_ld_vlr(
- neg_pred_corners,
- neg_soft_corners,
- weight=remain_targets.expand([-1, 4]).reshape([-1]),
- avg_factor=16.0)
- else:
- loss_ld_vlr = bbox_pred.sum() * 0
- # qfl loss
- score = paddle.to_tensor(score)
- loss_qfl = self.loss_qfl(
- cls_score, (labels, score),
- weight=label_weights,
- avg_factor=num_total_pos)
- loss_bbox_list.append(loss_bbox)
- loss_dfl_list.append(loss_dfl)
- loss_qfl_list.append(loss_qfl)
- loss_ld_list.append(loss_ld)
- loss_ld_vlr_list.append(loss_ld_vlr)
- loss_kd_list.append(loss_kd)
- avg_factor.append(weight_targets.sum())
- avg_factor = sum(avg_factor) # + 1e-6
- try:
- paddle.distributed.all_reduce(avg_factor)
- avg_factor = paddle.clip(
- avg_factor / paddle.distributed.get_world_size(), min=1)
- except:
- avg_factor = max(avg_factor.item(), 1)
- if avg_factor <= 0:
- loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- loss_bbox = paddle.to_tensor(
- 0, dtype='float32', stop_gradient=False)
- loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- loss_ld = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- loss_ld_vlr = paddle.to_tensor(
- 0, dtype='float32', stop_gradient=False)
- loss_kd = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
- else:
- losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
- losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
- loss_qfl = sum(loss_qfl_list)
- loss_bbox = sum(losses_bbox)
- loss_dfl = sum(losses_dfl)
- loss_ld = sum(loss_ld_list)
- loss_ld_vlr = sum(loss_ld_vlr_list)
- loss_kd = sum(loss_kd_list)
- loss_states = dict(
- loss_qfl=loss_qfl,
- loss_bbox=loss_bbox,
- loss_dfl=loss_dfl,
- loss_ld=loss_ld,
- loss_ld_vlr=loss_ld_vlr,
- loss_kd=loss_kd)
- return loss_states
|