123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- from ppdet.core.workspace import register
- from ..layers import AnchorGeneratorSSD
- from ..cls_utils import _get_class_default_kwargs
- @register
- class FaceHead(nn.Layer):
- """
- Head block for Face detection network
- Args:
- num_classes (int): Number of output classes.
- in_channels (int): Number of input channels.
- anchor_generator(object): instance of anchor genertor method.
- kernel_size (int): kernel size of Conv2D in FaceHead.
- padding (int): padding of Conv2D in FaceHead.
- conv_decay (float): norm_decay (float): weight decay for conv layer weights.
- loss (object): loss of face detection model.
- """
- __shared__ = ['num_classes']
- __inject__ = ['anchor_generator', 'loss']
- def __init__(self,
- num_classes=80,
- in_channels=[96, 96],
- anchor_generator=_get_class_default_kwargs(AnchorGeneratorSSD),
- kernel_size=3,
- padding=1,
- conv_decay=0.,
- loss='SSDLoss'):
- super(FaceHead, self).__init__()
- # add background class
- self.num_classes = num_classes + 1
- self.in_channels = in_channels
- self.anchor_generator = anchor_generator
- self.loss = loss
- if isinstance(anchor_generator, dict):
- self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
- self.num_priors = self.anchor_generator.num_priors
- self.box_convs = []
- self.score_convs = []
- for i, num_prior in enumerate(self.num_priors):
- box_conv_name = "boxes{}".format(i)
- box_conv = self.add_sublayer(
- box_conv_name,
- nn.Conv2D(
- in_channels=self.in_channels[i],
- out_channels=num_prior * 4,
- kernel_size=kernel_size,
- padding=padding))
- self.box_convs.append(box_conv)
- score_conv_name = "scores{}".format(i)
- score_conv = self.add_sublayer(
- score_conv_name,
- nn.Conv2D(
- in_channels=self.in_channels[i],
- out_channels=num_prior * self.num_classes,
- kernel_size=kernel_size,
- padding=padding))
- self.score_convs.append(score_conv)
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'in_channels': [i.channels for i in input_shape], }
- def forward(self, feats, image, gt_bbox=None, gt_class=None):
- box_preds = []
- cls_scores = []
- prior_boxes = []
- for feat, box_conv, score_conv in zip(feats, self.box_convs,
- self.score_convs):
- box_pred = box_conv(feat)
- box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
- box_pred = paddle.reshape(box_pred, [0, -1, 4])
- box_preds.append(box_pred)
- cls_score = score_conv(feat)
- cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
- cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
- cls_scores.append(cls_score)
- prior_boxes = self.anchor_generator(feats, image)
- if self.training:
- return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
- prior_boxes)
- else:
- return (box_preds, cls_scores), prior_boxes
- def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
- return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)
|